
Automatic Goal Discovery
in Subgoal Monte Carlo Tree Search

Dominik Jeurissen, Mark H.M. Winands, Chiara F. Sironi
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, Netherlands

dominik.jeurissen@student.maastrichtuniversity.nl
{m.winands, c.sironi}@maastrichtuniversity.nl

Diego Perez-Liebana
Game AI Group

Queen Mary University of London
London, United Kingdom
diego.perez@qmul.ac.uk

Abstract—Monte Carlo Tree Search (MCTS) is a heuristic
search algorithm that can play a wide range of games without
requiring any domain-specific knowledge. However, MCTS tends
to struggle in very complicated games due to an exponentially in-
creasing branching factor. A promising solution for this problem
is to focus the search only on a small fraction of states. Subgoal
Monte Carlo Tree Search (S-MCTS) achieves this by using a
predefined subgoal-predicate that detects promising states called
subgoals. However, not only does this make S-MCTS domain-
dependent, but also it is often difficult to define a good predicate.
In this paper, we propose using quality diversity (QD) algorithms
to detect subgoals in real-time. Furthermore, we show how
integrating QD-algorithms into S-MCTS significantly improves
its performance in the Physical Travelling Salesmen Problem
without requiring any domain-specific knowledge.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [1] is a heuristic search
algorithm that achieves good performance in a wide range of
games without requiring any domain knowledge. Compared
to algorithms like minimax, MCTS can often handle more
complex games with a high branching factor. This can be
attributed to MCTS investing the available computation-time
to more promising trajectories instead of equally distributing
it. However, as the complexity of a game grows, MCTS has to
sample more trajectories to estimate an action’s value accurately.
This leads to the issue that MCTS tends to play nearly randomly
in very complicated games.

Subgoal-MCTS (S-MCTS) [2] tries to solve this issue by
focusing the value estimation on a small set of subgoal-states.
Instead of optimizing the whole trajectory at once, a low-level
search optimizes partial trajectories that lead to predefined
subgoals. A high-level MCTS search then only chooses between
found subgoals.

One problem with S-MCTS is that the developer must pro-
vide a subgoal-predicate. Not only does this make the technique
domain-dependent, but it is also often quite challenging to
provide a good subgoal-predicate. For example, if the distances
between subgoals are too long, then the low-level search will
have trouble finding any subgoals. Additionally, if some parts
of the search space have no subgoals defined, S-MCTS will not
consider this subspace at all. Although this might be a desirable

property in some cases, it can also cause the algorithm to miss
important parts of the search space.

To make S-MCTS domain-independent and improve its
performance, this paper proposes using quality diversity search
(QD-search) for finding suitable subgoals. In the following
sections, we will review existing approaches for discovering
subgoals and motivate why QD-search may be better suited
for this. We then show how QD-search can be integrated into
S-MCTS and finally analyze the resulting performance.

II. BACKGROUND

A. Subgoal MCTS

In many environments, agents have to choose between
numerous actions, making it infeasible to explore every
individual action. Additionally, many actions may yield similar
results, and as such, finding the optimal trajectory may not
be necessary. Subgoal-MCTS (S-MCTS) [2] adapts MCTS
to better work in these kinds of environments. It splits the
problem into two sub-problems, a low-level search for finding
short action sequences called macro-actions and a high-level
MCTS-search that chooses between macro-actions.

The high-level MCTS search is mostly similar to standard
MCTS. However, when traversing the tree, each edge now
requires executing multiple actions instead of one, and it has
to keep track of the accumulated reward while executing the
macro-action. Additionally, the expansion step is replaced with
the low-level search for finding suitable macro-actions.

The low-level search replaces the expansion step in tradi-
tional MCTS, and its goal is to search for macro-actions that
lead to a state that fulfils a user-defined subgoal predicate. The
purpose of the predicate is to identify states that are likely
to lead to the final goal. Thus, whenever a node is expanded,
the low-level search is executed until it finds a trajectory that
leads to a new subgoal. The found trajectory is then added to
the high-level search tree. If the search finds a trajectory to a
previously discovered subgoal, it will replace the old trajectory
with the new one if it has a higher reward. Trajectories are
sampled by uniformly sampling actions until a subgoal or
a predefined horizon is reached. It is important to note that
the search does not have to find all subgoals at once since
the expansion step only requires one macro-action at a time.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 1. Example of how optimal subgoals (Marked golden) can enable S-MCTS
to find optimal trajectories (Marked red).

Once the search cannot find any new subgoals anymore, the
corresponding node in the high-level tree is treated as fully
expanded, and the search will not be executed anymore for
that node.

The main idea behind this approach is that the low-level
search can greedily optimize local trajectories, while the high-
level search uses the greedy results to optimize globally.
Furthermore, by splitting the search into multiple smaller ones,
the branching factor is reduced significantly.

B. Quality Diversity Search

Many optimization algorithms focus on maximizing the
performance of a behaviour. Instead, Quality Diversity (QD)
[3] algorithms try to find as many diverse behaviours as possible
while also seeking the behavioural niche’s best individual.

QD-algorithms make use of a concept called behaviour
characterization. The behaviour characterization is usually
a vector representing the sequence of actions taken by an
individual, but it can also include additional information. For
example, if the goal is to navigate a maze, the behaviour-
vector could be the agent’s final position. Another vital part
of QD-algorithms is an archive of previously discovered
behaviours. With the archive, the novelty of a new behaviour
can be computed by summing the distances to the nearest
neighbours in the archive.

QD-algorithms seek to explore the entire behaviour space,
which can help avoid deceptive fitness functions used in
traditional optimization algorithms. Although this can be
achieved using novelty alone [4], QD-algorithms also enforce
a fitness constraint to find novel and high performing solutions.

III. SUBGOAL DISCOVERY IN SUBGOAL-MCTS

A. Optimal subgoals

The optimal subgoal is a state that lies on an optimal
trajectory, meaning there is no trajectory with a higher return.
In order to find optimal trajectories with S-MCTS, at least
one optimal subgoal has to be found, given that the search
starts from an optimal subgoal. Fig. 1 shows how this property
enables S-MCTS to find optimal trajectories.

B. Any subgoal is sufficient

Existing approaches for subgoal discovery implicitly search
for optimal subgoals. For example, in one approach, bottlenecks
are used as subgoals [5]. Bottlenecks are states, which are

frequently visited on highly rewarding trajectories, such as
a door in a gridworld. Since bottlenecks have to be visited
to reach the goal, they are automatically an optimal subgoal.
Another approach is to find states with high empowerment [6].
Empowerment measures how much influence actions have on
the future states that the agent can reach. High empowerment
ensures that the agent has many options available, making it
more likely to find an optimal trajectory.

Although these approaches are viable techniques for dis-
covering subgoals, they either require much sampling or a
learning algorithm. Since the goal is to use the discovered
subgoals in S-MCTS, we cannot afford to spend much time
detecting a single subgoal. However, it may not be necessary
to search for optimal subgoals explicitly. Subgoals in S-MCTS
are effectively a way to prune a bunch of trajectories. For
example, given a room with two doors, we may define one
subgoal for each door to sufficiently explore all rooms. By
doing this, we prune away all trajectories except two. However,
if only one trajectory is used, the high-level search loses the
ability to explore the entire state-space. What that means is
that we only have to find a set of trajectories that enable the
high-level search to sufficiently explore the state-space. It does
not even matter if the trajectory leads immediately to the door,
as long as we eventually move through it.

The question that remains is how we can select subgoals in
order to explore the state-space. Fortunately, quality diversity
algorithms already solve this problem. Although QD-algorithms
focus on finding diverse behaviours, we can always define the
behaviour as the state reached by a trajectory. We can then
use any QD-algorithm to find a set of trajectories that lead to
novel states with high fitness. The resulting trajectories can
then be used as subgoals in the S-MCTS search.

C. Integrating Quality Diversity into S-MCTS

In general, the S-MCTS algorithm stays the same, except
that we replace the low-level predicate-based search with a
QD-search. Furthermore, we assume that S-MCTS can access
a behaviour-characterization function that maps a trajectory
onto a latent space representing the behaviour.

For every leaf node in the high-level search tree, we store
data for a low-level QD-search. The goal of the QD-search
is to find a set of trajectories that lead to high rewards and
novel states. Note that the novelty is measured locally, meaning
subgoals from the high-level tree are not used in the low-level
QD-search.

In comparison to the low-level search in S-MCTS, the
QD-search does not return one subgoal per high-level iteration.
Instead, we assume that the QD-search is an anytime algorithm,
and whenever we visit a leaf node, the QD-search is advanced
by one step. Once the QD-search search has been advanced
sufficiently often, the search is considered complete, and the
best trajectories will be added as subgoals to the leaf node.
However, in S-MCTS the low-level search always returns a
found subgoal for usage in the simulation and backpropagation
step of the high-level search. Since we no longer return subgoals
until the QD-Search search is completed, we instead assume

that the QD-Search search samples precisely one trajectory per
step. The state reached by the sampled trajectory is then used
in the high-level search. Note that this may cause problems
with the value estimation in the high-level search since most
of the trajectories sampled by the QD-Search will not be used
as subgoals.

D. Low-Level QD-Search

Because we use MCTS for the high-level search, we decided
to use it also for the low-level search. To ensure that the
low-level MCTS search can find novel trajectories, we use
an adapted reward function. Concretely we use as a reward
the latent distance to the subgoal node that contains the low-
level search. Given a distance-metric d(s1, s2)→ R+

0 , and the
behaviour vector of the subgoal node sg we define the reward
at each timestep as follows:

r(si, si+1) = d(si+1, sg)− d(si, sg) (1)

The reward function is positive when the distance to the high-
level subgoal increases and becomes negative if we get closer.
Note that the function does not consider how long it takes to
reach a certain distance, resulting in idling where the agent
moves back and forth between two positions. That is why
we use a discounted sum to accumulate all rewards because
a discount factor below 1 will make idling result in a lower
score overall. This procedure results in an MCTS algorithm
that focuses on finding trajectories that quickly move away
from the high-level subgoal.

As described in Section III-C, once the low-level search
was advanced a set amount of time, it has to return a set of
subgoals. Algorithm 1 contains the pseudocode for the subgoal
selection. It works by selecting a set of subgoal candidates
from the low-level MCTS tree, which are all trajectories with
a specific length. The length is kept the same to make the
comparison easy. Subgoals are then iteratively added to an
archive by evaluating candidates using a relative novelty and
reward score. We use the same scores as used in NOVELTY
SEARCH WITH LOCAL COMPETITION [7]. The novelty score is
the sum of distances to the k nearest subgoals, and the reward
score is the number of k nearest subgoals with a lower reward
than the candidate. Both scores are normalized between 0 and
1 and then combined to a final score using a weighted sum
with α = 0.5. We add subgoals until we selected a percentage
of all available candidates. For this paper, we select 2% of the
candidates.

IV. EXPERIMENTS AND RESULTS

A. Physical Travelling Salesman Problem

To evaluate the performance of the proposed algorithm,
we used the framework for the Physical Travelling Salesman
Problem (PTSP) [8] competition1. In the competition, an agent
has to steer a ship to reach ten waypoints scattered around
a map. An agent has 1000 steps to reach a waypoint. After

1The source code, as well as all experiments, can be found at:
https://github.com/CommanderCero/AutoSubgoalMCTS PTSP

Algorithm 1 Subgoal selection
Require:

Root of the low-level MCTS search tree r
Length of a macro action L
Number of neighbors k for novelty and reward score
Percentage p of trajectories to select
Weighting for rewards α

1: procedure SELECTSUBGOALS
2: cand← SelectNodes(r, L) . Subgoal candidates
3: cmax ← c ∈ cand with highest reward
4: subgoals← {cmax} . Start with best candidate
5: sCount← p · |cand| . Subgoal Count
6: while |subgoals| < sCount do
7: for ci in cand do . Update scores
8: neighbors← kClosest(subgoals, ci, k)
9: rScore← rewardScore(neighbors, ci)

10: nScore← noveltyScore(neighbors, ci)
11: assignScore(ci, α · rScore+ (1− α) · nScore)
12: cbest ← c ∈ cand with highest score
13: subgoals← subgoals ∪ {cbest}
14: return subgoals

reaching a waypoint, the time limit is reset back to 1000. To
move, the agent can control the ship’s thruster and rotate the
ship left and right. Although this results in only six actions
total, it takes many steps to move between waypoints. In fact,
the search depth required for this environment is so high that
we had to lower it by repeating a chosen action fifteen times
before moving to the next one.

Many strong solutions have already been proposed for this
environment, some of which can reliably reach all waypoints
[9]. In general, these approaches use a domain-independent
algorithm that handles the ship’s steering, but the order of
waypoints is precalculated and integrated into the rewards.
These solutions also repeat an action to lower the search depth.

B. Steering

For this paper, we evaluate the agents without providing them
with any domain knowledge. The used reward function returns
10 when a new waypoint is reached and otherwise -1. The
algorithms used are the vanilla MCTS algorithm, S-MCTS, and
the proposed QD-S-MCTS algorithm. Note that all algorithms
have a budget of 50000 forward model calls, and they all reuse
the search tree. All hyperparameters were handpicked.

S-MCTS is given access to a subgoal predicate that evenly
distributes a grid of subgoal points over the map. The predicate
detects a subgoal whenever a ship is in a certain radius
to a subgoal point. The velocity of the ship is ignored
when detecting a subgoal. The behaviour vector used for
QD-S-MCTS contains only the ship’s position. All algorithms
are evaluated ten times on each of the ten different maps
from the PTSP competition, ranging from an open area with
no obstacles to a maze. The starting position for each map
is always the same. However, ties in the selection phase are
resolved randomly and will behave differently for each run.

Fig. 2 and Fig. 3 contain the results of the experiments. The
results indicate that the QD-S-MCTS algorithm outperforms all
the other tested algorithms. Overall QD-S-MCTS performed

Fig. 2. The average number of waypoints an algorithm found on each map.
The legend shows the average across all maps.

best on maps with wide-open areas. In these cases, the subgoals
are spread evenly around the map, allowing the search to
find waypoints far away from the ship’s current position.
However, QD-S-MCTS struggled especially with maps with
narrow corridors, like Map45 containing a cave system and
Map56 which is a maze. What often happens in these maps
is that all found subgoals are clumped together in a single
area. This may happen because navigating the map is difficult,
and it is easier to just move the ship back and forth. This
problem may be solved by integrating the previously visited
subgoals into the novelty computation. Another problem that
often occurs is that when no new waypoints can be found
anymore, and QD-S-MCTS must rely on luck to move in the
correct direction. While this is unavoidable initially, integrating
some form of novelty reward into the high-level search may
also help with this problem.

At last, the main reason why S-MCTS failed to outperform
Vanilla MCTS is that it treats all states beyond a specific horizon
as subgoals, resulting in a huge branching factor. Concretely,
whenever S-MCTS searches for new subgoals, it will stop the
search after a set horizon. However, it still treats horizon-states
as subgoals, resulting in an algorithm that treats nearly all states
as subgoals. Essentially, the horizon-states make it difficult for
S-MCTS to leverage the pruning that the subgoals provide.

V. CONCLUSION AND UPCOMING WORK

In this paper, we proposed a new domain-independent search
algorithm called QD–S-MCTS, which replaces the predicate-
based subgoal search from Subgoal-MCTS with a quality
diversity search. Results show that the proposed algorithm
achieves high performance in an environment where the most
optimal trajectory is often very hard to find.

Fig. 3. The average number of steps an algoritm needed to reach a waypoint.
The legend shows the average across all maps.

As of now, we have used a modified MCTS algorithm
for the quality diversity search. As future research, we will
investigate the impact of other quality diversity algorithms on
the performance of QD-S-MCTS. Additionally, we only tested
how QD-S-MCTS performs without any domain knowledge.
As a next step, it is also interesting to see if the shown results
still hold if we introduce domain knowledge.

REFERENCES

[1] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

[2] T. Gabor, J. Peter, T. Phan, C. Meyer, and C. Linnhoff-Popien, “Subgoal-
based temporal abstraction in monte-carlo tree search,” in Proc. of the
Twenty-Eighth Int. Joint Conf. on AI, IJCAI-19, 7 2019, pp. 5562–5568.

[3] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers in Robot. and AI, vol. 3,
p. 40, 2016.

[4] J. Lehman and K. Stanley, “Exploiting open-endedness to solve problems
through the search for novelty,” Artificial Life - ALIFE, 01 2008.

[5] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in Proc. of the Eighteenth
Int. Conf. on Machine Learning, ser. ICML ’01. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001, p. 361–368.

[6] K. Gregor, D. J. Rezende, and D. Wierstra, “Variational intrinsic
control,” CoRR, vol. abs/1611.07507, 2016. [Online]. Available:
http://arxiv.org/abs/1611.07507

[7] J. Lehman and K. Stanley, “Evolving a diversity of creatures through
novelty search and local competition,” in Genetic and Evol. Comput. Conf.,
GECCO’11, 01 2011, pp. 211–218.

[8] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling
salesman problem: WCCI 2012 competition,” in 2012 IEEE Congr. on
Evolutionary Comput., 2012, pp. 1–8.

[9] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis,
P. I. Cowling, and S. M. Lucas, “Solving the physical traveling salesman
problem: Tree search and macro actions,” IEEE Trans. on Comput. Intell.
and AI in Games, vol. 6, no. 1, pp. 31–45, 2014.

