8 research outputs found

    Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus <it>Artemisia </it>(Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups.</p> <p>Results</p> <p>Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes.</p> <p>Conclusions</p> <p>Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units, their copy number and chromosomal organisation may occur within relatively short evolutionary time. We hypothesize that the 5S gene integration within the 35S unit might have repeatedly occurred during plant evolution, and probably once in Asteraceae.</p

    NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in <it>Arabidopsis thaliana</it>

    No full text
    Abstract Background Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. Results We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Conclusions Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.</p

    Developmental Control of Telomere Lengths and Telomerase Activity in Plants

    No full text

    Mre11 Deficiency in Arabidopsis Is Associated with Chromosomal Instability in Somatic Cells and Spo11-Dependent Genome Fragmentation during Meiosis

    No full text
    The Mre11/Rad50/Nbs1 complex is involved in many aspects of chromosome metabolism. Aberrant function of the complex is associated with defects in the DNA checkpoint, double-strand break repair, meiosis, and telomere maintenance. In this article, we report the consequences of Mre11 dysfunction for the stability of mitotic and meiotic chromosomes in Arabidopsis thaliana. Although plants homozygous for a T-DNA insertion in a conserved region of the MRE11 gene are viable, they exhibit growth defects and are infertile. Analysis of mitotic chromosomes prepared from the mutant plants revealed abundant dicentric chromosomes and chromosomal fragments. Fluorescence in situ hybridization showed that anaphase bridges are often formed by homologous chromosome arms. The frequency of chromosome fusions was not reduced in mre11 ku70 double mutants, suggesting that plants possess DNA end-joining activities independent of the Ku70/80 and Mre11 complexes. Cytogenetic examination of pollen mother cells revealed massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. The fragmentation was substantially suppressed in mre11 spo11-1 double mutants, indicating that Mre11 is required for repair but not for the induction of Spo11-dependent meiotic DNA breaks in Arabidopsis

    Isolation and characterisation of X chromosome-derived DNA sequences from a dioecious plant Melandrium album

    No full text
    Bůžek, Jiří ; Koutníková, Hana ; Houben, Andreas ; Říha, Karel ; Janousśek, Bohuslav ; Široký, Jiří ; Grant, Sarah ; Vyskot, Bori

    Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia, provides clues to early events in sex chromosome evolution.

    Get PDF
    Silene latifolia is a dioecious plant with heteromorphic sex chromosomes. The sex chromosomes of S. latifolia provide an opportunity to study the early events in sex chromosome evolution because of their relatively recent emergence. In this article, we present the genetic and physical mapping, expression analysis, and molecular evolutionary analysis of a sex-linked gene from S. latifolia, DD44 (Differential Display 44). DD44 is homologous to the oligomycin sensitivity-conferring protein, an essential component of the mitochondrial ATP synthase, and is ubiquitously expressed in both sexes. We have been able to genetically map DD44 to a region of the Y chromosome that is genetically linked to the carpel-suppressing locus. Although we have physically mapped DD44 to the distal end of the long arm of the X chromosome using fluorescence in situ hybridization (FISH), DD44 maps to the opposite arm of the Y chromosome as determined by our genetic map. These data suggest that chromosomal rearrangements have occurred on the Y chromosome, which may have contributed to the genetic isolation of the Y chromosome. We discuss the implications of these results with respect to the structural and functional evolution of the S. latifolia Y chromosome
    corecore