55 research outputs found
Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway
Sclerotinia species are important fungal pathogens of a wide range of crops and wild host plants. While the biology and population structure of Sclerotinia sclerotiorum has been well-studied, little information is available for the related species S. subarctica. In this study, Sclerotinia isolates were collected from different crop plants and the wild host Ranuculus ficaria (meadow buttercup) in England, Scotland, and Norway to determine the incidence of Sclerotinia subarctica and examine the population structure of this pathogen for the first time. Incidence was very low in England, comprising only 4.3% of isolates while moderate and high incidence of S. subarctica was identified in Scotland and Norway, comprising 18.3 and 48.0% of isolates respectively. Characterization with eight microsatellite markers identified 75 haplotypes within a total of 157 isolates over the three countries with a few haplotypes in Scotland and Norway sampled at a higher frequency than the rest across multiple locations and host plants. In total, eight microsatellite haplotypes were shared between Scotland and Norway while none were shared with England. Bayesian and principal component analyses revealed common ancestry and clustering of Scottish and Norwegian S. subarctica isolates while English isolates were assigned to a separate population cluster and exhibited low diversity indicative of isolation. Population structure was also examined for S. sclerotiorum isolates from England, Scotland, Norway, and Australia using microsatellite data, including some from a previous study in England. In total, 484 haplotypes were identified within 800 S. sclerotiorum isolates with just 15 shared between England and Scotland and none shared between any other countries. Bayesian and principal component analyses revealed a common ancestry and clustering of the English and Scottish isolates while Norwegian and Australian isolates were assigned to separate clusters. Furthermore, sequencing part of the intergenic spacer (IGS) region of the rRNA gene resulted in 26 IGS haplotypes within 870 S. sclerotiorum isolates, nine of which had not been previously identified and two of which were also widely distributed across different countries. S. subarctica therefore has a multiclonal population structure similar to S. sclerotiorum, but has a different ancestry and distribution across England, Scotland, and Norway
Effects of Inoculum Concentration and Host Age on Infection of Geranium by<i>Botrytis cinerea</i>
Effect of Wetness Duration and Temperature on Infection of Geranium by<i>Botrytis cinerea</i>
Integration of entomopathogenic nematodes with pesticides for the control of Cosmopolites sordidus germar
Haploidy, Diploidy and Evolution of Antifungal Drug Resistance in Saccharomyces cerevisiae
We tested the hypothesis that the time course of the evolution of antifungal drug resistance depends on the ploidy of the fungus. The experiments were designed to measure the initial response to the selection imposed by the antifungal drug fluconazole up to and including the fixation of the first resistance mutation in populations of Saccharomyces cerevisiae. Under conditions of low drug concentration, mutations in the genes PDR1 and PDR3, which regulate the ABC transporters implicated in resistance to fluconazole, are favored. In this environment, diploid populations of defined size consistently became fixed for a resistance mutation sooner than haploid populations. Experiments manipulating population sizes showed that this advantage of diploids was due to increased mutation availability relative to that of haploids; in effect, diploids have twice the number of mutational targets as haploids and hence have a reduced waiting time for mutations to occur. Under conditions of high drug concentration, recessive mutations in ERG3, which result in resistance through altered sterol synthesis, are favored. In this environment, haploids consistently achieved resistance much sooner than diploids. When 29 haploid and 29 diploid populations were evolved for 100 generations in low drug concentration, the mutations fixed in diploid populations were all dominant, while the mutations fixed in haploid populations were either recessive (16 populations) or dominant (13 populations). Further, the spectrum of the 53 nonsynonymous mutations identified at the sequence level was different between haploids and diploids. These results fit existing theory on the relative abilities of haploids and diploids to adapt and suggest that the ploidy of the fungal pathogen has a strong impact on the evolution of fluconazole resistance
Early antenatal serum lipid levels and the risk of pre-eclampsia in Trinidad and Tobago
Antagonism between Two Mechanisms of Antifungal Drug Resistance
This study tested for interaction between two independently evolved mechanisms of fluconazole resistance in Saccharomyces cerevisiae. One set of strains was from a 400-generation evolution experiment, during which the concentration of fluconazole was increased from 16 to 256 μg/ml in four increments. At 100 generations, populations became fixed for resistance mutations in either of two transcriptional regulators, PDR1 or PDR3. At 400 generations, replicate populations became fixed for another resistance mutation in UNK1, an unmapped gene further increasing resistance. Another genotype used in this study came from a population placed initially in 128 μg/ml of fluconazole; this environment selects for resistance through loss of function at ERG3, resulting in altered sterol metabolism. Mutant strains carrying PDR1(r) or PDR3(r) were crossed with the erg3(r) mutant strain, and the doubly mutant, haploid offspring were identified. The double-mutant strains grew less well than the parent strains at all concentrations of fluconazole tested. In genome-wide assays of gene expression, several ABC transporter genes that were overexpressed in one parent and several ERG genes that were overexpressed in the other parent were also overexpressed in the double mutants. Of the 43 genes that were consistently overexpressed in the PDR1(r) parents at generation 100, however, 31 were not consistently overexpressed in the double mutants. Of these 31 genes, 30 were also not consistently overexpressed after a further 300 generations of evolution in the PDR1(r) parent populations. The two independently evolved mechanisms of fluconazole resistance are strongly antagonistic to one another
Étude expérimentale de la sensibilité de vertébrés hétérothermes tropicaux (crapaud, grenouilles, lézards) à diverses souches de nématodes entomoparasites des genres Heterorhabditis et Steinernema
L'agressivité des nématodes parasites d'insectes Heterorhabditidae et Steinernematidae envers les jeunes tétards du crapaud Bufo marinus diffère avec la souche. L'adulte du lézard iguanide Anolis marmoratus est également sensible à certaines souches. La grenouille Eleutherodactylus sp. adulte n'est pas sensible. Les bactéries Xenorhabdus spp inoculées massivement, par scarification du derme, à la souris blanche (Mus musculus) n'ont déclenché aucune dermatose
- …
