28 research outputs found

    Bose-Einstein condensation of metastable helium: some experimental aspects

    Full text link
    We describe our recent realization of BEC using metastable helium. All detection is done with a micruchannel plate which detects the metastables or ions coming from the trapped atom cloud. This discussion emphasizes some of the diagnostic experiments which were necessary to quantitatively analyse our results.Comment: 5 pages, 3 figure

    Ionization rates in a Bose-Einstein condensate of metastable Helium

    Full text link
    We have studied ionizing collisions in a BEC of He*. Measurements of the ion production rate combined with measurements of the density and number of atoms for the same sample allow us to estimate both the 2 and 3-body contributions to this rate. A comparison with the decay of the number of condensed atoms in our magnetic trap, in the presence of an rf-shield, indicates that ionizing collisions are largely or wholly responsible for the loss. Quantum depletion makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure

    Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms

    Full text link
    We report an experiment measuring simultaneously the temperatureand the flux of ions produced by a cloud of triplet metastablehelium atoms at the Bose-Einstein critical temperature. The onsetof condensation is revealed by a sharp increase of the ion fluxduring evaporative cooling. Combining our measurements withprevious measurements of ionization in a pure BEC,we extract an improved value of the scattering lengtha=11.3−1+2a=11.3^{+2}_{-1} nm. The analysis includes corrections takinginto accountthe effect of atomic interactions on the criticaltemperature, and thus an independent measurement of the scatteringlength would allow a new test of these calculations

    Using ion production to monitor the birth and death of a metastable helium Bose-Einstein condensate

    Full text link
    We discuss observations of the ion flux from a cloud of trapped metastable helium atoms. Both Bose-Einstein condensates and thermal clouds were investigated. The ion flux is compared to time-of-flight observations of the expanded cloud. We show data concerning BEC formation and decay, as well as measurements of two- and three-body ionization rate constants. We also discuss possible improvements and extensions of our results.Comment: 14 pages, 9 figures, submitted to Journal of Optics B (special issue, cold quantum gases

    Prospects for measurement and control of the scattering length of metastable helium using photoassociation techniques

    Full text link
    A numerical investigation of two-laser photoassociation (PA) spectroscopy on spin-polarized metastable helium (He*) atoms is presented within the context of experimental observation of the least-bound energy level in the scattering potential and subsequent determination of the s-wave scattering length. Starting out from the model developed by Bohn and Julienne [Phys. Rev. A \textbf{60}, (1999) 414], PA rate coefficients are obtained as a function of the parameters of the two lasers. The rate coefficients are used to simulate one- and two-laser PA spectra. The results demonstrate the feasibility of a spectroscopic determination of the binding energy of the least-bound level. The simulated spectra may be used as a guideline when designing such an experiment, whereas the model may also be employed for fitting experimentally obtained PA spectra. In addition, the prospects for substantial modification of the He* scattering length by means of optical Feshbach resonances are considered. Several experimental issues relating to the numerical investigation presented here are discussed.Comment: 9 pages, 7 figure

    Purely-long-range bound states of He(2s3S)+(2s ^3S)+He(2p3P)(2p ^3P)

    Full text link
    We predict the presence and positions of purely-long-range bound states of 4^4He(2s3S)+4(2s ^3S)+{}^4He(2p3P)(2p ^3P) near the 2s3S1+2p3P0,12s ^3S_1+2p ^3P_{0,1} atomic limits. The results of the full multichannel and approximate models are compared, and we assess the sensitivity of the bound states to atomic parameters characterizing the potentials. Photoassociation to these purely-long-range molecular bound states may improve the knowledge of the scattering length associated with the collisions of two ultracold spin-polarized 4^4He(2s3S)(2s ^3S) atoms, which is important for studies of Bose-Einstein condensates.Comment: 16 pages, 5 figure

    An extensively validated C/H/O/N chemical network for hot exoplanet disequilibrium chemistry

    No full text
    This is the author accepted manuscript We aimed to build a new and updated C0-C2 chemical network to study the CHON disequilibrium chemistry of warm and hot exoplanet atmospheres that relies on extensively validated and recent state-of-the-art combustion networks. The reliability range of this network was aimed for conditions between 500 - 2500 K and 100 - 10^-6 bar. We compared the predictions of seven networks over a large set of experiments, covering a wide range of conditions (pressures, temperatures, and initial compositions). To examine the consequences of this new chemical network on exoplanets atmospheric studies, we generated abundances profiles for GJ 436 b, GJ 1214 b, HD 189733 b, and HD 209458 b, using the 1D kinetic model FRECKLL and calculated the corresponding transmission spectra using TauREx 3.1. These spectra and abundance profiles have been compared with results obtained with our previous chemical network. Our new kinetic network is composed of 174 species and 1293 reactions mostly reversible. This network proves to be more accurate than our previous one for the tested experimental conditions. The nitrogen chemistry update is found to be impactful on the abundance profiles, particularly for HCN, with differences up to four orders of magnitude. The CO2 profiles are also significantly affected, with important repercussions on the transmission spectrum of GJ 436 b. These effects highlight the importance of using extensively validated chemical networks to gain confidence in our models predictions. As shown with CH2NH, the coupling between carbon and nitrogen chemistry combined with radicals produced by photolysis can have huge effects impacting the transmission spectra.Agence Nationale de la RechercheCentre National d’Études Spatiales (CNES)CNRS/INS

    Condensation d'He métastable

    No full text
    Un condensat de Bose-Einstein de l'hélium dans un état métastable a été réalisé. Cet état a une énergie interne de 20 électron-volts par rapport à l'état fondamental, ce qui peut conduire à des collisions inélastiques qui détruirait le condensat. Cependant le taux de ces collisions est réduit de plusieurs ordres de grandeurs du fait de la polarisation des atomes dans le piège magnétique (conservation de spin pendant l'interaction). Cette réduction des collisions permet d'obtenir une densité dans l'espace de phase suffisante pour la condensation. La longueur de diffusion a été estimée à partir des données expérimentales et est trouvée en accord avec la prédiction théorique
    corecore