18 research outputs found

    Neurotrophic factor GDNF promotes survival of salivary stem cells

    Get PDF
    Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia

    Regionalization of Head and Neck Cancer Surgery May Fragment Care and Impact Overall Survival

    No full text
    OBJECTIVE: While surgical treatment concentrates in tertiary care centers, an increasing number of patients request postoperative radiation therapy (PORT) at a separate center closer to home. Our goal was to determine whether fragmentation of surgery and PORT were associated with poorer oncologic outcomes. METHODS: We conducted a retrospective cohort study of 32,813 head and neck cancer patients treated with surgery and PORT in the National Cancer Data Base. Our main outcome was overall survival (OS). Statistical analysis included chi(2) , t tests, Kaplan-Meier, and Cox regression analysis. RESULTS: Fragmented care was independently associated with increased risk of mortality (hazard ratio [HR], 1.08; 95% confidence interval [CI], 1.03-1.13), whereas distance to surgical center \u3e 30 miles (HR, 0.92; 95% CI, 0.87-0.97) was associated with improved OS. On subgroup analysis, fragmented care was associated with decreased OS only among patients who had surgery at an academic center (HR, 1.10; 95% CI, 1.04-1.17). Within academic centers, greater distance from the surgical center was associated with improved survival only in patients who received PORT at the same facility (HR, 0.85; 95% CI, 0.78-0.93), but this effect was negated among patients who had fragmented care (HR, 0.97; 95% CI, 0.85-1.11). CONCLUSION: When cancer care is fragmented, there is no longer a survival benefit for patients to travel for surgical care at academic medical centers. Fragmented care is independently associated with worse survival, and further research is needed to evaluate the causes of this difference in survival to determine if improving care coordination can mitigate this survival difference. LEVEL OF EVIDENCE: NA. Laryngoscope, 2018

    Association of Survival With Shorter Time to Radiation Therapy After Surgery for US Patients With Head and Neck Cancer.

    No full text
    Importance:Shortening the time from surgery to the start of radiation (TS-RT) is a consideration for physicians and patients. Although the National Comprehensive Cancer Network recommends radiation to start within 6 weeks, a survival benefit with this metric remains controversial. Objective:To determine the association of delayed TS-RT with overall survival (OS) using a large cancer registry. Design, Setting, and Participants:In this observational cohort study, 25 216 patients with nonmetastatic stages III to IV head and neck cancer were identified from the National Cancer Database (NCDB). Exposures:Patients received definitive surgery followed by adjuvant radiation therapy, with an interval duration defined as TS-RT. Main Outcomes and Measures:Overall survival as a function of TS-RT and the effect of clinicopathologic risk factors and accelerated fractionation. Results:We identified 25 216 patients with nonmetastatic squamous cell carcinoma of the head and neck. There were 18 968 (75%) men and 6248 (25%) women and the mean (SD) age of the cohort was 59 (10.9) years. Of the 25 216 patients, 9765 (39%) had a 42-days or less TS-RT and 4735 (19%) had a 43- to 49-day TS-RT. Median OS was 10.5 years (95% CI, 10.0-11.1 years) for patients with a 42-days or less TS-RT, 8.2 years (95% CI, 7.4-8.6 years; absolute difference, -2.4 years, 95% CI, -1.5 to -3.2 years) for patients with a 43- to 49-day TS-RT, and 6.5 years (95% CI, 6.1-6.8 years; absolute difference, -4.1 years, 95% CI, -3.4 to -4.7 years) for those with a 50-days or more TS-RT. Multivariable analysis found that compared with a 42-days or less TS-RT, there was not a significant increase in mortality with a 43- to 49-day TS-RT (HR, 0.98; 95% CI, 0.93-1.04), although there was for a TS-RT of 50 days or more (HR, 1.07; 95% CI, 1.02-1.12). A significant interaction was identified between TS-RT and disease site. Subgroup effect modeling found that a delayed TS-RT of 7 days resulted in significantly worse OS for patients with tonsil tumors (HR, 1.22; 95% CI, 1.05-1.43) though not other tumor subtypes. Accelerated fractionation of 5.2 fractions or more per week was associated with improved survival (HR, 0.93; 95% CI, 0.87-0.99) compared with standard fractionation. Conclusions and Relevance:Delayed TS-RT of 50 days or more was associated with worse overall survival. The multidisciplinary care team should focus on shortening TS-RT to improve survival. Unavoidable delays may be an indication for accelerated fractionation or other dose intensification strategies

    Botulinum Toxin Confers Radioprotection in Murine Salivary Glands

    No full text
    PURPOSE: Xerostomia is a common radiation sequela, which has a negative impact on the quality of life of patients with head and neck cancer. Current treatment strategies offer only partial relief. Botulinum toxins (BTX) have been successfully used in treating a variety of radiation sequelae such as cystitis, proctitis, fibrosis, and facial pain. The purpose of this study was to evaluate the effect of BTX on radiation-induced salivary gland damage. METHODS AND MATERIALS: We used a previously established model for murine salivary gland irradiation (IR). The submandibular glands (SMGs) of C5BL/6 mice (n=6/group) were injected with saline or BTX 72 hours before receiving 15 Gy of focal irradiation. Saliva flow was measured 3, 7, and 28 days after treatment. The SMGs were collected for immunohistochemistry, confocal microscopy, and Western blotting. A cytokine array consisting of 40 different mouse cytokines was used to evaluate cytokine profiles after radiation treatment. RESULTS: Irradiated mice showed a 50% reduction in saliva flow after 3 days, whereas mice preinjected with BTX had 25% reduction in saliva flow (P CONCLUSIONS: These data suggest that BTX pretreatment ameliorates radiation-induced saliva dysfunction. Moreover, we demonstrate a novel role for CXCL5 in the acute phase of salivary gland damage after radiation. These results carry important clinical implications for the treatment of xerostomia in patients with head and neck cancer

    Neurotrophic factor GDNF promotes survival of salivary stem cells

    Get PDF
    Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia

    A novel aldehyde dehydrogenase-3 activator (Alda-89) protects submandibular gland function from irradiation without accelerating tumor growth

    No full text
    PURPOSE: To determine the effect of Alda-89 (an ALDH3 activitor) on (i) the function of irradiated (radiotherapy) submandibular gland (SMG) in mice, (ii) its toxicity profile, and (iii) its effect on the growth of head and neck cancer (HNC) in vitro and in vivo. EXPERIMENTAL DESIGN: Adult mice were infused with Alda-89 or vehicle before, during, and after radiotherapy. Saliva secretion was monitored weekly. Hematology, metabolic profile, and postmortem evaluation for toxicity were examined at the time of sacrifice. Alda-89 or vehicle was applied to HNC cell lines in vitro, and severe combined immunodeficient (SCID) mice transplanted with HNC in vivo with or without radiation; HNC growth was monitored. The ALDH3A1 and ALDH3A2 protein expression was evaluated in 89 patients with HNC and correlated to freedom from relapse (FFR) and overall survival (OS). RESULTS: Alda-89 infusion significantly resulted in more whole saliva production and a higher percentage of preserved acini after radiotherapy compared with vehicle control. There was no difference in the complete blood count, metabolic profile, and major organ morphology between the Alda-89 and vehicle groups. Compared with vehicle control, Alda-89 treatment neither accelerated HNC cell proliferation in vitro, nor did it affect tumor growth in vivo with or without radiotherapy. Higher expression of ALDH3A1 or ALDH3A2 was not significantly associated with worse FFR or OS in either human papillomavirus (HPV)-positive or HPV-negative group. CONCLUSION: Alda-89 preserves salivary function after radiotherapy without affecting HNC growth or causing measurable toxicity in mice. It is a promising candidate to mitigate radiotherapy-related xerostomia

    Neurotrophic factor GDNF promotes survival of salivary stem cells

    No full text
    Stem cell–based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin(–)CD24(+)c-Kit(+)Sca1(+), possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line–derived neurotrophic factor (Gdnf) is highly expressed in Lin(–)CD24(+)c-Kit(+)Sca1(+) stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia

    A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo

    No full text
    PURPOSE: To assess aldehyde dehydrogenase (ALDH) expression in adult human and murine submandibular gland (SMG) stem cells and to determine the effect of ALDH3 activation in SMG stem cell enrichment. EXPERIMENTAL DESIGN: Adult human and murine SMG stem cells were selected by cell surface markers (CD34 for human and c-Kit for mouse) and characterized for various other stem cell surface markers by flow cytometry and ALDH isozymes expression by quantitative reverse transcriptase PCR. Sphere formation and bromodeoxyuridine (BrdUrd) incorporation assays were used on selected cells to confirm their renewal capacity and three-dimensional (3D) collagen matrix culture was applied to observe differentiation. To determine whether ALDH3 activation would increase stem cell yield, adult mice were infused with a novel ALDH3 activator (Alda-89) or with vehicle followed by quantification of c-Kit(+)/CD90(+) SMG stem cells and BrdUrd(+) salispheres. RESULTS: More than 99% of CD34(+) huSMG stem cells stained positive for c-Kit, CD90 and 70% colocalized with CD44, Nestin. Similarly, 73.8% c-Kit(+) mSMG stem cells colocalized with Sca-1, whereas 80.7% with CD90. Functionally, these cells formed BrdUrd(+) salispheres, which differentiated into acinar- and ductal-like structures when cultured in 3D collagen. Both adult human and murine SMG stem cells showed higher expression of ALDH3 than in their non-stem cells and 84% of these cells have measurable ALDH1 activity. Alda-89 infusion in adult mice significantly increased c-Kit(+)/CD90(+) SMG population and BrdUrd(+) sphere formation compared with control. CONCLUSION: This is the first study to characterize expression of different ALDH isozymes in SMG stem cells. In vivo activation of ALDH3 can increase SMG stem cell yield, thus providing a novel means for SMG stem cell enrichment for future stem cell therapy
    corecore