8 research outputs found
Single nucleotide polymorphism profiles of canine T-cell and null-cell lymphomas
BackgroundThe histopathological classification of T-cell lymphoma (TCL) in humans has distinctive mutational genotyping that suggests different lymphomagenesis. A similar concept is assumed to be observed in dogs with different TCL phenotypes.ObjectiveThis study aimed to identify the previously reported single-nucleotide polymorphisms (SNPs) in both human beings and dogs in canine TCLs and null-cell lymphomas (NCLs) and to design compatible oligonucleotides from each variant based on the multiplex polymerase chain reaction.MethodsGenomic DNA was extracted from 68 tumor specimens (62 TCLs and 6 NCLs) and 5 buffy coat samples from dogs with TCL. Four TCL subtypes and NCL were analyzed in 44 SNPs from 21 genes using the MassARRAY.ResultsThe greatest incidences of SNPs observed in all TCL subtypes and NCL ware SATB1 c.1259A > C, KIT c.1275A > G, SEL1L c.2040 + 200C > G, and TP53 c.1024C > T, respectively. Some SNP locations were statistically significant associated with NCL, including MYC p.S75F (p = 0.0003), TP53 p.I149N (p = 0.030), PDCD1 p.F37LX (p = 0.012), and POT1 p.R583* (p = 0.012).ConclusionEach TCL histological subtype and NCL are likely to contain distinctive mutational genetic profiles, which might play a role in lymphoma gene-risk factors and might be useful for selecting therapeutic target drugs for each canine patient
Monitoring minimal residual disease in canine lymphomas treated with modified L-COP or L-CHOP protocols
Heteroduplex polymerase chain reaction for antigen receptor rearrangements (hPARR) was developed to monitor minimal residual disease (MRD) in canine B- and T-cell lymphomas treated with the modified L-COP or L-CHOP protocol. Thirty-five dogs were recruited in this study and their neoplastic lineages were determined by immunophenotyping with Pax5 and CD3. Peripheral blood leukocytes were collected prior to and during chemotherapy in weeks 4, 9 and 13 to detect MRD by hPARR. Twenty-eight dogs (80%) had B-cell lymphoma while seven dogs (20%) had T-cell lymphoma. A monoclonal band was detected in 11 cases that showed complete or partial remission before tumour relapse and no response to the current treatment without statistical difference in clinical outcomes; however, the treatment response had an association with the MRD result (P < 0.05). Modified L-CHOP prolonged median progression-free survival as compared to modified L-COP (215 days vs. 93 days; P < 0.05). Substage b had shorter progression-free survival than substage a (90 days vs. 215 days; P < 0.05). Clinical stage III affected median overall survival time when compared to clinical stages IV and V (432, 173 and 118 days, respectively; P < 0.05). hPARR could be used for screening refractory lymphoma together with lymph node measurement in routine clinical cases
Hematological and blood biochemistry parameters as prognostic indicators of survival in canine multicentric lymphoma treated with COP and L-COP protocols
Background and Aim: Hematological and blood chemistry parameters are crucial for evaluating and monitoring canine multicentric lymphoma during chemotherapy. Pre-treatment hematological and blood chemistry parameters can be used as prognostic survival outcomes for this disease. Therefore, this study aimed to investigate the effect of hematological and blood chemistry parameters pre-treatment and 4 weeks post-treatment on the survival outcomes of dogs treated with either a combination of cyclophosphamide, vincristine, and prednisolone (COP) or a combination of COP with L-asparaginase (L-COP) protocols.
Materials and Methods: We conducted a retrospective study. Medical records and hematological and blood chemistry parameters of 41 dogs with multicentric lymphoma treated with L-COP (n = 26) and the COP protocols (n = 15) were obtained from the hospital information system. Most cases were classified as high-grade lymphoma based on the Kiel cytological classification. The effects of hematological and blood chemistry parameters on survival outcomes were investigated using the Cox proportional hazard regression model. The median survival time (MST) for each hematological and blood chemistry parameter affecting survival outcome was established and compared using the Kaplan–Meier product limit method with the log-rank test.
Results: Dogs with high-grade multicentric lymphoma that were treated with the COP protocol and had monocytosis at pre-treatment had a significantly shorter MST than dogs with normal monocyte counts (p = 0.033). In addition, dogs with azotemia, both pre-treatment and 4 weeks post-treatment, had a significantly shorter MST than dogs with normal serum creatinine levels (p = 0.012). Dogs with high-grade multicentric lymphoma treated with the L-COP protocol who had hypoalbuminemia (serum albumin concentration <2.5 mg/dL) at both pre-treatment and 4 weeks post-treatment had a significantly shorter MST than dogs with normal serum albumin levels (p < 0.001). Furthermore, dogs with leukocytosis at 4 weeks post-treatment had a significantly shorter MST than those with a normal total white blood cell count (p = 0.024).
Conclusion: Serum albumin level can serve as a simple negative prognostic indicator of survival outcomes in dogs with high-grade multicentric lymphoma treated with the L-COP protocol. Dogs with hypoalbuminemia pre-treatment and 4 weeks post-treatment tended to have a shorter MST than those with normal serum albumin concentrations
Recommended from our members
Smartphone multiplex microcapillary diagnostics using Cygnus: development and evaluation of rapid serotype-specific NS1 detection with dengue patient samples
Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device–termed Cygnus–with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-μl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58–0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63–0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction
Evaluation of 41 single nucleotide polymorphisms in canine diffuse large B-cell lymphomas using MassARRAY.
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma in dogs with a multicentric form. This study aimed to assemble 41 variants of the previously reported genes and to investigate these variants in canine DLBCL using the Agena MassARRAY platform. These variants were chosen based on the high prevalence observed in canine B- and T-cell lymphomas, their significance for target therapy, and compatibility for multiplex PCR amplification. Lymph node biopsy was performed from 60 dogs with B-cell lymphoma comprising 47 purebred and 13 crossbred dogs. All dogs presented single nucleotide polymorphisms (SNPs) at HYAL4 and SATB1 genes. The lesser mutual SNPs were observed at SEL1L, excluding a cocker spaniel, and c-Kit, with the exception of a pug and a French bulldog. Even though no statistical association was noted between each SNP and dog breed, purebreds were 3.88 times more likely to have a SNP at FLT3 rs852342480 (95%CI 0.50-45.03, p = 0.26), 3.64 times at TRAF3 F306X (95%CI 0.58-42.50, p = 0.43) and 2.66 times at TRAF3 E303EX (95%CI 0.56-13.12, p = 0.31). Also, DLBCL dogs (CHOP-based treatment) with c-Kit T425= had a poorer prognosis with shorter median overall survival times (OST) than dogs with the wild type. Dogs treated with COP chemotherapy and contained 3-5 variants at SEL1L were associated with decreased median OST. Therefore, this SNPs lymphoma panel provides valuable information that we can use to outline a prognosis and develop a treatment plan for the targeted therapy of each dog
Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry in vitro
AbstractImmune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their in vitro properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers
Recommended from our members
Gravity-driven microfluidic siphons: fluidic characterization and application to quantitative immunoassays
A range of biosensing techniques including immunoassays are routinely used for quantitation of analytes in biological samples and available in a range of formats, from centralized lab testing (e.g., microplate enzyme-linked immunosorbent assay (ELISA)) to automated point-of-care (POC) and lateral flow immunochromatographic tests. High analytical performance is intrinsically linked to the use of a sequence of reagent and washing steps, yet this is extremely challenging to deliver at the POC without a high level of fluidic control involving, e.g., automation, fluidic pumping, or manual fluid handling/pipetting. Here we introduce a microfluidic siphon concept that conceptualizes a multistep ″dipstick″ for quantitative, enzymatically amplified immunoassays using a strip of microporous or microbored material. We demonstrated that gravity-driven siphon flow can be realized in single-bore glass capillaries, a multibored microcapillary film, and a glass fiber porous membrane. In contrast to other POC devices proposed to date, the operation of the siphon is only dependent on the hydrostatic liquid pressure (gravity) and not capillary forces, and the unique stepwise approach to the delivery of the sample and immunoassay reagents results in zero dead volume in the device, no reagent overlap or carryover, and full start/stop fluid control. We demonstrated applications of a 10-bore microfluidic siphon as a portable ELISA system without compromised quantitative capabilities in two global diagnostic applications: (1) a four-plex sandwich ELISA for rapid smartphone dengue serotype identification by serotype-specific dengue virus NS1 antigen detection, relevant for acute dengue fever diagnosis, and (2) quantitation of anti-SARS-CoV-2 IgG and IgM titers in spiked serum samples. Diagnostic siphons provide the opportunity for high-performance immunoassay testing outside sophisticated laboratories, meeting the rapidly changing global clinical and public health needs