9 research outputs found

    Prescription appropriateness of anti-diabetes drugs in elderly patients hospitalized in a clinical setting: evidence from the REPOSI Register

    Get PDF
    Diabetes is an increasing global health burden with the highest prevalence (24.0%) observed in elderly people. Older diabetic adults have a greater risk of hospitalization and several geriatric syndromes than older nondiabetic adults. For these conditions, special care is required in prescribing therapies including anti- diabetes drugs. Aim of this study was to evaluate the appropriateness and the adherence to safety recommendations in the prescriptions of glucose-lowering drugs in hospitalized elderly patients with diabetes. Data for this cross-sectional study were obtained from the REgistro POliterapie-Società Italiana Medicina Interna (REPOSI) that collected clinical information on patients aged ≥ 65 years acutely admitted to Italian internal medicine and geriatric non-intensive care units (ICU) from 2010 up to 2019. Prescription appropriateness was assessed according to the 2019 AGS Beers Criteria and anti-diabetes drug data sheets.Among 5349 patients, 1624 (30.3%) had diagnosis of type 2 diabetes. At admission, 37.7% of diabetic patients received treatment with metformin, 37.3% insulin therapy, 16.4% sulfonylureas, and 11.4% glinides. Surprisingly, only 3.1% of diabetic patients were treated with new classes of anti- diabetes drugs. According to prescription criteria, at admission 15.4% of patients treated with metformin and 2.6% with sulfonylureas received inappropriately these treatments. At discharge, the inappropriateness of metformin therapy decreased (10.2%, P < 0.0001). According to Beers criteria, the inappropriate prescriptions of sulfonylureas raised to 29% both at admission and at discharge. This study shows a poor adherence to current guidelines on diabetes management in hospitalized elderly people with a high prevalence of inappropriate use of sulfonylureas according to the Beers criteria

    Manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role both in the neurotoxin MPTP- and manganese (Mn)-induced neurotoxicity and in apoptotic cell death. In the present study, we report that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion (at concentrations of 0.5 and 1.0 mM), induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Both Mn and 2′Et-MPTP induced also a time-dependent decrease in cell viability, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Only Mn-induced apoptosis and decrease in cell viability were inhibited by the antioxidant ascorbic acid. We conclude that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized only in the Mn-induced apoptosis

    Role of oxidative stress in the manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role in the apoptotic death of several cellular systems, including neurons. Oxidative stress is proposed also as a mechanism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and manganese (Mn)-induced neuronal death. We have recently shown that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion, induce apoptosis in PC12 cells. In the present study, we evaluated the effects of deprenyl and the antioxidant drugs N-acetylcysteine (NAC) and ascorbic acid (AA) on Mn- and 2′Et-MPTP-induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxy-uridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mn-induced apoptosis and decrease in cell viability was inhibited by the antioxidants NAC and AA. Deprenyl failed to inhibit the above Mn effects. Neither NAC, AA nor deprenyl were able to inhibit both 2′Et-MPTP-induced apoptosis and decrease in cell viability. These results confirm that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized, at least in vitro, only in the Mn-induced apoptosis

    Effects of allopurinol on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurochemical changes in the striatum and in the brainstem of the rat

    No full text
    Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid (DHAA), glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined in the striatum and/or in the brainstem of 3-month-old male Wistar rats, given allopurinol (500 mg/kg day by gavage) for 3 days before a single MPTP 52 mg/kg dose i.p. Allopurinol alone decreased uric acid and hypoxanthine levels in the striatum and in the brainstem; moreover, allopurinol increased AA oxidation and decreased striatal DA metabolites. Allopurinol affected neither regional MPTP and MPP+ levels nor the MPTP-induced inhibition of striatal DA oxidative metabolism. On the contrary, the MPTP-induced increase in uric acid levels and decrease in xanthine, hypoxanthine and NA levels were fully antagonised. Such findings demonstrate that the claimed MPP(+)-induced oxidative stress mediated by xanthine oxidase may be involved at least in the NA depletion; moreover, uric acid may have a physiological role as an active component of the neuronal antioxidant pool

    Allopurinol protects against manganese-induced oxidative stress in the striatum and in the brainstem of the rat

    No full text
    Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid, glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and and 3-methoxytyramine were determined in the striatum and/or in the brainstem of 3-month-old male Wistar rats given manganese (MnCl2, 200 mg/kg/day for 7 days by gavage) alone or associated with allopurinol. Allopurinol alone (300 mg/kg/day for 4 days by gavage) decreased uric acid and increased xanthine levels both in the striatum and in the brainstem; moreover, allopurinol decreased the striatal DOPAC + HVA/DA ratio. Allopurinol antagonised the Mn-induced: (a) increase in the DOPAC + HVA/DA ratio; (b) increase in uric acid levels and AA oxidation; and (c) decrease in GSH and NA levels. We conclude that allopurinol may protect against Mn-induced oxidative stress by inhibiting both DA oxidative metabolism and xanthine oxidase-mediated formation of reactive oxygen species

    Protective effect of deferoxamine on sodium nitroprusside-induced apoptosis in PC12 cells

    No full text
    Reportedly, the generation of nitric oxide (NO) may lead to iron mobilization from ferritin disrupting intracellular iron homeostasis and increasing levels of reactive oxygen species. In the present study, we evaluated the role of endogenous iron in NO-induced apoptosis in PC12 cells. Apoptosis was tested by flow cytometry, fluorescence microscopy and terminal deoxynucleotidyl transferase-mediated 2′-deoxy-uridine 5′-triphosphate nick end labeling (TUNEL) technique. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. When incubated with 0.5–0.75 mM sodium nitroprusside (SNP, a chemical NO donor), PC12 cells were shown to undergo apoptosis. In addition, SNP induced a time-dependent decrease in cell viability. Since deferoxamine (0.05–0.1 mM), a powerful iron chelator, inhibited both SNP-induced apoptosis and the decrease in cell viability, we suggest that these NO effects may be dependent upon iron mobilization within the cell

    Statins, ACE/ARBs drug use, and risk of pneumonia in hospitalized older patients: a retrospective cohort study

    No full text
    : The aims of this study is to evaluate the association between angiotensin-converting enzyme inhibitor (ACE-I), angiotensin II receptor blocker (ARBs) and/or statin use with the risk of pneumonia, as well as and with in-hospital and short-term outpatient mortality in hospitalized older patients with pneumonia. Patients aged 65 years or older hospitalized in internal medicine and/or geriatric wards throughout Italy and enrolled in the REPOSI (REgistro Politerapuie SIMI-Società Italiana di Medicina Interna) register from 2010 to 2019 were screened to assess the diagnosis of pneumonia and classified on whether or not they were prescribed with at least one drug among ACE-I, ARBs, and/or statins. Further study outcomes were mortality during hospital stay and at 3 months after hospital discharge. Among 5717 cases included (of whom 18.0% with pneumonia), 2915 (51.0%) were prescribed at least one drug among ACE-I, ARBs, and statins. An inverse association was found between treatment with ACE-I or ARBs and pneumonia (OR = 0.79, 95% CI 0.65-0.95). A higher effect was found among patients treated with ACE-I or ARBs in combination with statins (OR = 0.67, 95% CI 0.52-0.85). This study confirmed in the real-world setting that these largely used medications may reduce the risk of pneumonia in older people, who chronically take them for cardiovascular conditions

    Undiagnosed cognitive impairment in older adults hospitalized in internal medicine wards: Data from the REPOSI registry

    No full text
    No abstract availabl

    Correction to: Prescription appropriateness of anti-diabetes drugs in elderly patients hospitalized in a clinical setting: evidence from the REPOSI Register

    No full text
    No abstract availabl
    corecore