6 research outputs found

    Forecasting species distributions : correlation does not equal causation

    Get PDF
    This research was funded by the U.S. Department of the Interior Northeast Climate Adaptation Science Center, which is managed by the U.S. Geological Survey National Climate Adaptation Science Center. Additional funding was provided by T-2- 3R grants for Nongame Species Monitoring and Management through the New Hampshire Fish and Game Department and E-1- 25 grants for Investigations and Population Recovery through the Vermont Fish and Wildlife Department.Aim Identifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects. Location New Hampshire and Vermont, USA. Methods Using causal and correlational models and new theory on range limits, we compared current (2014?2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high-emission scenario (RCP8.5) of projected snow and forest biomass change. Results Our hypothesis that causal models of climate-mediated competition would result in different distribution predictions than correlational models, both in the current and future periods, was well-supported by our results; however, these patterns were prominent only for species pairs that exhibited strong interactions. The causal model predicted the current distribution of Canada lynx (Lynx canadensis) more accurately, likely because it incorporated the influence of competitive interactions mediated by snow with the closely related bobcat (Lynx rufus). Both modeling frameworks predicted an overall decline in lynx occurrence in the central high-elevation regions and increased occurrence in the northeastern region in the 2080s due to changes in land use that provided optimal habitat. However, these losses and gains were less substantial in the causal model due to the inclusion of an indirect buffering effect of snow on lynx. Main conclusions Our comparative analysis indicates that a causal framework, steeped in ecological theory, can be used to generate spatially explicit predictions of species distributions. This approach can be used to disentangle correlated predictors that have previously hampered understanding of range limits and species' response to climate change.Publisher PDFPeer reviewe

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Abiotic stress and biotic factors mediate range dynamics on opposing edges

    Get PDF
    This research was funded by the U.S. Department of the Interior Northeast Climate Adaptation Science Center, which is managed by the U.S. Geological Survey National Climate Adaptation Science Center. Additional funding was provided by T‐2‐3R grants for Nongame Species Monitoring and Management through the New Hampshire Fish and Game Department (NHFG), and E‐1‐25 grants for Investigations and Population Recovery through the Vermont Fish and Wildlife Department (VFWD).Aim In the face of global change, understanding causes of range limits are one of the most pressing needs in biogeography and ecology. A prevailing hypothesis is that abiotic stress forms cold (upper latitude/altitude) limits, whereas biotic interactions create warm (lower) limits. A new framework - Interactive Range-Limit Theory (iRLT) - asserts that positive biotic factors such as food availability can ameliorate abiotic stress along cold edges, whereas abiotic stress can have a positive effect and mediate biotic interactions (e.g., competition) along warm limits. Location Northeastern United States Taxon Carnivora Methods We evaluated two hypotheses of iRLT using occupancy and structural equation modeling (SEM) frameworks based on data collected over a 6-year period (2014?2019) of six carnivore species across a broad latitudinal (42.8-45.3°N) and altitudinal (3-1451 m) gradient. Results We found that snow directly limits populations, but prey or habitat availability can influence range dynamics along cold edges. For example, bobcats (Lynx rufus) and coyotes (Canis latrans) were limited by deep snow and long winters, but the availability of prey had a strong positive effect. Conversely, snow had a strong positive effect on the warm limits of Canada lynx (Lynx canadensis), countering the negative effect of competition with the phylogenetically similar bobcat and with coyotes, highlighting how climate mediates competition between species. Main conclusions We used an integrated dataset that included competitors and prey species collected at the same spatial and temporal scale. As such, this design, along with a causal modeling framework (SEM), allowed us to evaluate community-wide hypotheses at macroecological scales and identify coarse-scale drivers of species' range limits. Our study supports iRLT and underscores the need to consider direct and indirect mechanisms for studying range dynamics and species' responses to global change.Publisher PDFPeer reviewe
    corecore