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Abstract
Aim: In the face of global change, understanding causes of range limits are one of 
the most pressing needs in biogeography and ecology. A prevailing hypothesis is that 
abiotic stress forms cold (upper latitude/altitude) limits, whereas biotic interactions 
create warm (lower) limits. A new framework –  Interactive Range- Limit Theory (iRLT) –   
asserts that positive biotic factors such as food availability can ameliorate abiotic 
stress along cold edges, whereas abiotic stress can have a positive effect and mediate 
biotic interactions (e.g., competition) along warm limits.
Location: Northeastern United States
Taxon: Carnivora
Methods: We evaluated two hypotheses of iRLT using occupancy and structural 
equation modeling (SEM) frameworks based on data collected over a 6- year period 
(2014– 2019) of six carnivore species across a broad latitudinal (42.8– 45.3°N) and al-
titudinal (3– 1451 m) gradient.
Results: We found that snow directly limits populations, but prey or habitat avail-
ability can influence range dynamics along cold edges. For example, bobcats (Lynx 
rufus) and coyotes (Canis latrans) were limited by deep snow and long winters, but the 
availability of prey had a strong positive effect. Conversely, snow had a strong posi-
tive effect on the warm limits of Canada lynx (Lynx canadensis), countering the nega-
tive effect of competition with the phylogenetically similar bobcat and with coyotes, 
highlighting how climate mediates competition between species.
Main conclusions: We used an integrated dataset that included competitors and prey 
species collected at the same spatial and temporal scale. As such, this design, along 
with a causal modeling framework (SEM), allowed us to evaluate community- wide 
hypotheses at macroecological scales and identify coarse- scale drivers of species' 
range limits. Our study supports iRLT and underscores the need to consider direct and 
indirect mechanisms for studying range dynamics and species' responses to global 
change.
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1  |  INTRODUC TION

The causes of range limits have long fascinated biogeographers and 
ecologists. An enduring theory postulates that harsh climate forms 
cold (upper latitudinal/altitudinal) boundaries and biotic interactions 
form warm (lower) limits (Darwin, 1859; MacArthur, 1984). Despite 
its widespread acceptance, there is mixed support for this idea 
(Louthan et al., 2015; Normand et al., 2009) or for others that only 
evaluate the influence of abiotic factors (e.g., environmental niche 
models) or biotic processes (e.g., abundant- center hypothesis) on 
range limits (Sexton et al., 2009). This lack of clarity, combined with 
the observed and predicted impacts of climate change, has spurred 
an interest in developing a unified theory on range limits (Connallon 
& Sgrò, 2018; Sirén & Morelli, 2020).

The recently proposed interactive Range- Limit Theory (iRLT) 
highlights how the interplay between abiotic and biotic factors 
forms limits and causes shifts in a species' range (Sirén & Morelli, 
2020). Positive biotic factors, such as prey or habitat availability, can 
ameliorate abiotic stress along cold range limits. This dynamic is well 
illustrated by populations that either persist or expand along cold 
limits, despite abiotic stress, when abundant food resources became 
available (Sirén & Morelli, 2020). For example, populations of south-
ern flying squirrels (Glaucomys volans) along cold limits have higher 
survival during severe winters when food resources (i.e., tree mast) 
are abundant (Bowman et al., 2005). Their recent northward range 
expansion is attributed to milder winters, yet also fueled by masting 
events (Bowman et al., 2005). Conversely, abiotic stress can mediate 
negative biotic interactions (e.g., competition) for populations along 
warm limits. Indeed, many studies indicate that populations along 
warm limits exhibit a positive association with abiotic stress (e.g., 
cold temperature) that is thought to control competitors or pred-
ators (Sirén & Morelli, 2020). This is exemplified by southern pop-
ulations of wolverines (Gulo gulo) that depend on long and snowy 
winters to protect their cached food supplies (Inman et al., 2012). 
There is strong evidence for many taxa that positive biotic and abi-
otic effects interact with limiting factors to form range boundaries 
and facilitate shifts (see review in Sirén & Morelli, 2020). Thus, iRLT 
extends existing theory on range limits and provides a framework 
for evaluating how interactions between abiotic and biotic factors 
form range limits and how this varies by cold and warm distributional 
edges.

Here, we empirically test the predictions set forth by iRLT using 
data from a suite of carnivores at their range limits in the boreal- 
temperate ecotone in the northeastern United States: the cold 
(upper latitudinal/altitudinal) limit of bobcats (Lynx rufus), coyotes 
(Canis latrans), and fishers (Pekania pennanti), and the warm (lower 
latitudinal/altitudinal) limit of Canada lynx (Lynx canadensis) and 

American martens (Martes americana) (Figure 1). Previous work has 
shown that bobcats, coyotes, and fishers have a negative associa-
tion with deep snow and a strong association with abundant or large 
prey in northern regions (Jensen & Humphries, 2019; Litvaitis et al., 
1986; Major & Sherburne, 1987; Scully et al., 2018). Furthermore, 
it is widely assumed that competition limits lynx and martens along 
their warm- edge boundaries (Jensen & Humphries, 2019; Peers 
et al., 2013; Scully et al., 2018). However, it is unclear which fac-
tors drive distribution dynamics of these species, including the ex-
tent to which climate, competition, and prey availability influence 
range limits. We propose that the lack of clarity is due to the cor-
relative nature of these factors and how they interact to influence 
populations indirectly or directly along warm and cold edges. To this 
end, we used structural equation modeling (SEM) framework, which 
has been advocated by previous authors (e.g., Wisz et al., 2013) yet 
not implemented, to disentangle correlated factors that form range 
limits. Developing a mechanistic understanding is necessary to ac-
curately predict, and ultimately to prepare for, climate change re-
sponses along range edges (Urban et al., 2016).

We evaluated the hypotheses of iRLT using remote camera data 
collected over a 6- year period (2014– 2019) to understand how abi-
otic and biotic factors influence carnivore populations along range 
edges (Table 1, Figure 2). We included the previously mentioned 
carnivores as well as red fox (Vulpes vulpes) and three prey species 
(snowshoe hare, Lepus americanus; red squirrel, Tamiasciurus hud-
sonicus; white- tailed deer, Odocoileus virginianus) that have been 
shown to affect population and community dynamics (Table 2). Red 
fox were not found along or near range limits in the study region. 
However, we retained this species due to its potential influence on 
community dynamics (see Table 2). Finally, we were primarily eval-
uating factors influencing latitudinal limits, but some species (e.g., 
fisher) were at or near their altitudinal limits, resulting in lower 
occupancy. The expansive high- altitude region was located in the 
northern part of our study area (Figures 1 and 3) and had a colder 
and snowier climate that was more representative of the northern 
latitudinal limit of these species' ranges.

Our first hypothesis was that snow has a direct- limiting effect 
on populations along cold edges but that unlinked biotic factors (i.e., 
density- independent, Anderson, 2017), such as habitat or prey avail-
ability, ameliorate harsh conditions and indirectly form range lim-
its (Table 1, Figure 2). Accordingly, we predicted that snow would 
have a negative and direct effect for carnivore populations along 
cold edges, whereas increased prey and habitat availability would 
have positive direct and indirect effects, respectively (Table 2, 
Figure 2). For populations along warm- edge limits, we hypothesized 
that snow mediates competitive interactions between phylogenet-
ically and ecologically similar species and ultimately affects range 

K E Y W O R D S
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limits (Table 1, Figure 2). Following this idea, we predicted that snow 
would have a positive and indirect effect and mediate competitive 
interactions for carnivore populations along warm edges (Table 2, 
Figure 2).

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Our study area was located in the northeastern United States within 
the states of New Hampshire and Vermont (Figure 3). This region 
is part of the transition zone between the northern hardwood and 
boreal forests, where ecological communities that occur all the way 
north to Alaska meet those from the southeastern United States 
(Goldblum & Rigg, 2010). Elevation of our sampling ranged from the 
lowest valleys at 3 m to the highest peaks in the region at 1487 m 
and latitude ranged between 42.8 and 45.3°N (Figure 3). Boreal for-
est was generally found at higher elevation throughout the region 
and low elevation in the north.

The climate of the region is humid with mild and rainy summers 
and cold winters with deep snow (Davis et al., 2013). Annual precip-
itation varies between 101 and 160 cm and snowfall ranges from 
244 to 406 cm, with deeper snow at high elevation and northern re-
gions (Davis et al., 2013). July is the warmest month averaging 18°C 

(11°C– 27°C) and January the coldest month averaging −11°C (−15°C 
to −2°C).

2.2  |  Data collection

2.2.1  |  Camera surveys

We used data from 257 camera- trap sites spaced in non- overlapping 
grids based on the home range size of the smallest carnivore species 
(marten = 2 × 2 km; Sirén et al., 2016) (Figure 3). Each site included a 
remote camera positioned facing north on a tree, 1– 2 m above the snow 
surface, and pointed at a slight downward angle toward a stake posi-
tioned 3– 5 m from the camera (Figure 3, inset). Commercial skunk lure 
and turkey feathers were used as attractants and placed directly on 
the snow stakes. Cameras were set to take 1– 3 consecutive pictures 
every 1– 10 sec when triggered, depending on the brand and model, and 
checked on average 3 (range = 1– 9) times each season to download data, 
refresh attractants, and to ensure cameras were working properly.

2.3  |  Statistical methods

We adopted a two- step modeling approach to evaluate our hypothe-
ses. First, we used detection/non- detection data of six carnivore and 

F I G U R E  1  Range maps of carnivore and prey species along or near cold (blue) and warm (red) range limits in the region (black box) 
sampled in this study. Maps were downloaded from the International Union for Conservation of Nature (IUCN) Red List of Threatened 
Species (Version 2020– 2 http://www.iucnr edlist.org) on 10 November 2020. Note: Our sampling included the regional limits or areas 
of low occupancy of fishers, red squirrels, and deer not captured by IUCN maps. The warm edge of martens was expanded to reflect its 
contemporary range in our study region (Krohn, 2012). Red fox (data not shown) are considered cosmopolitan in the region and throughout 
most of North America.

http://www.iucnredlist.org
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F I G U R E  2  Our a priori model illustrating the hypothesized effects of snow depth (abiotic), prey and habitat availability (unlinked biotic 
factors), and biotic interactions (competition) on carnivores along cold and warm range limits in the northeastern United States. Black arrows 
represent predicted direct effects and unidirectional consecutive arrows pointed in the same direction represent indirect effects. Indirect 
effects are calculated by taking the product of consecutive path coefficients. For example, the product of the two negative path coefficients 
between snow depth, fisher, and marten equals a positive indirect effect. Total or net effects are the summation of direct and indirect paths. 
Dashed lines with double- sided arrows represent free covariances (ε1,2,3). The symbols used are courtesy of the Integration and Application 
Network, University of Maryland Center for Environmental Science (www.ian.umces.edu/symbols).

TA B L E  2  Range limit position (Cold, Warm) and predicted effect (+,- ) of abiotic and biotic covariates on each species included in SEMs. 
Detection/non- detection data of carnivore and prey species from camera surveys conducted between 15 October and 16 May from 2014 
to 2019 were used to generate best unbiased predictors (i.e., BUPs) from occupancy models as inputs for SEMs. Note, red fox were found 
throughout the region and considered cosmopolitan (Cos).

Species Limit Predictions Notable papers

Bobcat (Lynx rufus) Cold - snow depth, +deer, +hare, +squirrel Litvaitis and Harrison (1989); Litvaitis et al. (1986); 
Newbury and Hodges (2018); Reed et al. (2017)

Coyote (Canis latrans) Cold - snow depth, +deer, +hare Litvaitis and Harrison (1989); O’Donoghue et al. 
(1998); Sirén et al. (2017)

Fisher (Pekania pennanti) Cold - snow depth, +hare, +squirrel Jensen and Humphries (2019); Kirby et al. (2018); 
Manlick et al. (2017)

White- tailed deer (Odocoileus 
virginianus)

Cold - snow depth, - biomass Dawe and Boutin (2016); Simons- Legaard et al. 
(2018)

Red fox (Vulpes vulpes)* Cos - snow depth, - coyote, +hare Halpin and Bissonette (1988); Harrison et al. (1989); 
Sirén et al. (2017)

Canada lynx (Lynx canadensis) Warm +snow depth, - biomass, - bobcat, 
- coyote, +squirrel, +hare

Bayne et al. (2008); Ivan and Shenk (2016); 
O’Donoghue et al. (1998); Peers et al. (2013); 
Scully et al. (2018)

American marten (Martes 
americana)

Warm +snow depth, +biomass, - fisher, - red 
fox, +squirrel, +hare

Carlson et al. (2014); Jensen and Humphries (2019); 
Krohn (2012); McCann et al. (2010); Sirén (2013); 
Thompson and Colgan (1987)

Snowshoe hare (Lepus 
americanus)

Warm +snow depth, - biomass Homyack et al. (2007); Sultaire et al. (2016)

Red squirrel (Tamiasciurus 
hudsonicus)

Warm +snow depth, +biomass McDermott et al. (2020)

http://www.ian.umces.edu/symbols
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three prey species along or near range limits (see Table 2; Figure 1) 
from camera surveys to fit single- season occupancy models and 
derive the best unbiased estimates of occurrence (Kéry & Royle, 
2015). We then included these estimates as response and predictor 
variables within a structural equation modeling (SEM) framework to 
evaluate hypotheses of iRLT.

2.3.1  |  Single- season occupancy models

To generate species occurrence states for the SEM, we used cam-
era data from autumn to spring (16 October– 15 May) for each year 
(2014– 2019). This seasonal range was chosen as it approximates 
demographic (i.e., births and deaths) and geographic closure (i.e., 
dispersal) and is based on species' ecological responses to snow-
pack and leaf phenology of the region (Sirén et al., 2016; Vashon 
et al., 2008). We identified species in photographs by their unique 
morphology and field marks and used consensus from multiple ob-
servers when identification was uncertain (Thornton et al., 2019). 
We organized camera data into weekly occasions using CPW Photo 
Warehouse (Ivan & Newkirk, 2016) and recorded whether or not 
each species was detected during the occasion. We analyzed these 
data using a single- species, single- season occupancy modeling 
framework (MacKenzie et al., 2017).

To generate best unbiased estimates of occurrence (BUPs), we 
fit a saturated model for each carnivore and prey species, including 
several covariates on detection and occupancy (Table 1). Because we 
used data from multiple years, we used a ‘stacked’ design and spec-
ified ‘Year’ as a fixed effect on detection and occupancy probability. 
We modeled detection probability as a function of temperature (°C), 
snow depth (cm), site- level biomass of vegetation (metric tons/ha), 
number of weeks since a camera was checked, and the week of each 
survey year (Table 1). We fit a second- order polynomial for week as 
we expected a non- linear relationship between detection probabil-
ity and week for most species. We modeled occupancy probability 
as a function of several snowpack and forest cover type/biomass 
variables (Table 1). Prior to modeling, we screened all detection and 
occupancy covariates for multicollinearity using a variance inflation 
factor (VIF) test with a conservative cutoff (VIF <2; Zuur et al., 2010). 
Detection covariates all had VIF scores <2, indicating no multicol-
linearity, so we allowed all covariates in models. Some occupancy co-
variates had VIF scores >2, so we eliminated those with the highest 
scores until we found a set of occupancy covariates that exhibited 
no multicollinearity (VIF scores <2). In summary, we fit a saturated 
model on detection and occupancy for each species, accounting for 
multicollinearity and convergence, to maximally explain occurrence 
(conditional on the data). All occupancy analyses were performed 

in R (R Core Team, 2019) using the ‘unmarked’ package (Fiske & 
Chandler, 2011).

To determine how well the models fit the data and to evaluate 
assumptions of closure, we conducted goodness- of- fit tests using 
the ‘parboot’ function in the ‘unmarked’ package, running 1000 
bootstrapped iterations of the saturated model for each species. We 
considered models to fit the data if the summed square of residuals 
(SSE) were within the distribution of the bootstrapped SSE (Kéry & 
Royle, 2015).

For each species, we extracted the empirical best unbiased pre-
dictor of occupancy (i.e., BUPs) from camera survey locations during 
each year they were operational using the ‘ranef’ and ‘bup’ functions 
in ‘unmarked’ (Fiske & Chandler, 2011). We then used these cor-
rected estimates of carnivore and prey occurrence (the binary mode 
of the posterior distributions) as response or biotic predictor vari-
ables in the SEM to evaluate direct and indirect drivers of species' 
occurrence patterns (Table 1, Figure 2).

2.3.2  |  Structural equation modeling

Structural equation modeling is generally described as a series of 
univariate regressions within a causal graph or network of paths 
that allows for the evaluation of complex and competing hypoth-
eses about direct and indirect casual relationships (Grace, 2008). 
While the focus of correlative approaches is on single processes 
or responses and provides measures of associations, SEM disen-
tangles correlated variables to identify causal relationships, mak-
ing it ideal for evaluating ecological and biogeographical theories 
(Grace, 2008; Wisz et al., 2013), including the direct and indirect 
hypotheses of iRLT. Moreover, pairing SEM with occupancy mod-
els allows direct and indirect effects on species' distributions to 
be evaluated while accounting for the pervasive issue of imperfect 
detection (Joseph et al., 2016). For a detailed overview of SEM, 
including the approach we used for evaluating iRLT (piecewise 
SEM), and how it differs from correlative statistics, see Text S1 in 
Supporting Information.

We specified snow depth (cm) and forest biomass (metric tons/
ha) as exogenous variables in the SEM (Table 1, Figure 2), using 
SNODAS (Barrett, 2003) and forest succession and disturbance 
(McGarigal et al., 2017) data, respectively. Forests with lower bio-
mass values were considered early- successional forest, whereas 
those with higher values were late- successional (McGarigal et al., 
2017). We smoothed the snow depth and biomass layers using 
a Gaussian kernel function in the ‘gridkernel’ package (Plunkett, 
2019) with a custom bandwidth that was relevant to the scale of 
our sampling (4 km2 grids) and extracted smoothed values from 

F I G U R E  3  Location of 257 remote camera sites (black dots) placed within non- overlapping 2 × 2 km grids (gray grids) in New Hampshire and 
Vermont, USA (blue dot within inset map of USA and Canada) for studying carnivore distribution dynamics. The sampling method (upper left inset) 
includes a snow stake with visual (feather) and olfactory (skunk) lures placed 3– 5 m from a camera. Elevation within the region ranged from sea 
level (blue) to 1906 m (white) and that of our cameras ranged from 3 to 1487 m.
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the camera survey locations using the ‘extract’ function in the ‘ras-
ter’ package (Hijmans et al., 2015). Our sampling focused more on 
forested areas with deeper snow depth compared to the broader 
region (Figure S1).

Using snow depth and forest biomass as exogenous variables 
and derived estimates of carnivore and prey occupancy (i.e., BUPs) 
as response and predictor variables, we employed conditional 
separation or d- sep tests (Lefcheck, 2016) to identify direct and 
indirect effects. Prior to inclusion in the SEM, we z- score stan-
dardized exogenous variables to improve model estimation and 
compare effect strengths (Grace et al., 2018). We fit a series of 
univariate generalized linear mixed- effects models (binomial dis-
tribution with logit- link function) in the SEM using the ‘lme4’ pack-
age (Bates et al., 2015); for all models, ‘camera’ was specified as 
a random effect due to repeated measurements and variability in 
effort across years. For variables whose causal relationships were 
either unknown or implausible, we fixed their error terms as free 
covariances (Figure 2). We assessed d- sep of the SEM by evaluat-
ing the Pearson's chi- squared statistic of a Fisher's C test, where 
a p > 0.05 indicates adequate fit of the observed data and condi-
tional independence (Lefcheck, 2016). If the SEM was d- sep (i.e., 
conditionally independent), the path coefficients (i.e., relationships 
between nodes) from the univariate regressions were used to cal-
culate direct and indirect effects. Direct effects were considered 
as connected nodes and indirect effects were considered as those 
separated by one node; path coefficients of indirect effects were 
the product of two direct path coefficients (Figure 2). Total or net 
effects were calculated as the summation of direct and indirect 
paths. Path coefficients were considered significant if their 95% 
confidence intervals did not overlap zero; indirect effects were 
only significant if both individual connecting paths were signifi-
cant. We also reported the conditional R2 values for each species, 
which indicate the proportion of variance explained by the fixed 
and random effects. We used the ‘piecewiseSEM’ package in R 
(Lefcheck, 2016) for SEM modeling.

3  |  RESULTS

3.1  |  Camera surveys

From 9 January 2014 to 8 May 2019 (6 winters), we surveyed carni-
vore and prey species using remote cameras in 257 grids for a total 
of 15,034 weeks of sampling (2014: 62 cameras, 762 weeks; 2015: 
78 cameras, 1,295 weeks; 2016: 99 cameras, 1,851 weeks; 2017: 
128 cameras, 2,487 weeks; 2018: 182 cameras, 4,141 weeks; and 
2019: 187 cameras, 4498 weeks). The number of detections and 
sites occupied varied by species with prey species detected more 
frequently than carnivores (Table S1). The number of detections 
(weekly) over the entire study varied by species (x = 784 ± 243 SE, 
range = 69– 2500) as did the number of sites occupied (x = 144 ± 20 
SE, range = 28– 198) and naïve occupancy (x = 0.56 ± 0.08 SE, 
range = 0.11– 0.77; Table S1).

3.2  |  Single- season occupancy models

We fit saturated detection and occupancy sub- models, ac-
counting for multicollinearity and convergence, for carnivore 
and prey species (Table S2) to generate species- specific occu-
pancy estimates for SEMs. For all species, the summed square 
of residuals (SSE) of the top models were well within the distri-
bution of the bootstrapped SSEs, with no evidence for a lack of 
fit (Table S3).

3.3  |  Structural equation models

We evaluated a SEM that represented hypotheses of iRLT and alter-
native hypotheses on range limits using a piecewise approach. The 
model fit the data well (Fisher's C = 6.41, df = 8, p = 0.60), indicating 
d- sep (i.e., conditional separation) and explained 18%– 60% of the 
variation in carnivore occurrence and 11%– 45% of the variation in 
prey occurrence (Figure 4).

3.4  |  Direct and indirect causes of cold limits

Snow depth had a direct negative effect on bobcat and coyote 
occupancy along their cold (upper) limits (Table 3, Figure 4). The 
effect of snow depth, however, was weak and non- significant for 
fishers (Table 3). On the other hand, the availability of deer, and 
to a lesser extent red squirrels, had a strong direct positive effect 
on fishers (Table 3, Figure S2). These prey species had an equally 
strong direct effect on bobcats, countering the negative effect of 
snow depth, whereas deer had a considerably stronger direct ef-
fect than snow depth on coyotes (Table 3, Figure 4). Snow depth 
also had an indirect negative effect on coyotes, bobcats, and fish-
ers due to its negative influence on deer (snow depth → deer → 
coyote/bobcat/fisher; Table 3, Figure 4). Indirect effects of snow 
depth were countered, especially for bobcats, by a positive di-
rect effect of snow depth on hares; however, this prey species 
did not impart strong effects on these carnivores (Table 3). Forest 
biomass had an indirect effect on bobcat, coyote, and fisher oc-
cupancy, specifically through its direct effect on deer (Table 3, 
Figure 4, Figure S2).

3.5  |  Direct and indirect causes of warm limits

Snow depth had a direct and positive influence on lynx and marten 
occupancy (Table 3, Figure 4). Coyotes had the strongest negative 
direct effect on these species (Table 3, Figure 4). Bobcats also had 
a negative direct effect on lynx (Figure 4); however, there was high 
uncertainty with this relationship (Table 3). The direct negative ef-
fect that snow depth had on these competitors produced an indirect 
positive effect on lynx and martens (snow depth → competitors → 
lynx/martens; Table 3, Figure 4). Of competing species, bobcats had 
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the strongest total net effect on lynx due to a shared, yet oppo-
site, relationship with snow depth (Table 3). Coyotes imparted the 
strongest total effect for martens (Table 3). Interestingly, squirrels 
had a marginally significant negative effect on lynx, whereas this 
prey species imparted a strong positive effect on bobcats and mar-
tens (Table 3, Figure 4, Figure S2). Snowshoe hares, on the other 
hand, had a strong and positive direct effect on lynx and marten oc-
cupancy and there were strong indirect effects through snow depth 
and forest biomass (snow depth/biomass → hares → lynx/marten; 
Table 3, Figure 4). Forest biomass exhibited a negative direct effect, 
indicating that lynx were more likely to occur in early- successional 
forests; the opposite pattern occurred for martens (Table 3, Figure 4, 
Figure S2).

3.6  |  Influence of red fox on community dynamics

Coyotes and fishers had a direct positive effect on red fox oc-
currence, as did forest biomass (Table 3; Figure S2). Snowshoe 

hares, however, had a negative effect on red fox (Table 3, Figure 
S2). Snow depth did not have any effect on red fox and this 
species did not impart strong effects on marten occurrence 
(Table 3).

4  |  DISCUSSION

It is typically assumed that biotic interactions limit species along 
warm range edges, although support for this hypothesis is equivocal 
(Cahill et al., 2014). Furthermore, few studies have given credence to 
the potential for positive biotic factors to ameliorate harsh climate 
along cold- edge limits (but see Prugh & Sivy, 2020). Our study is, to 
our knowledge, the first to apply a SEM framework to test explicit 
hypotheses about the direct and indirect effects that determine 
range limits. As such, we were able to disentangle several correlated 
abiotic and biotic factors and shed light on previous work. Most im-
portantly, our results illustrate that abiotic stress can mediate com-
petition along warm range limits, supporting iRLT (Sirén & Morelli, 

F I G U R E  4  Structural equation model 
(SEM) evaluating direct and indirect 
effects of snow depth, forest biomass 
(metric tons/ha), and prey availability 
on coyote, bobcat, and lynx occurrence. 
All black lines indicate significant path 
coefficients and conditional R2 values 
are provided in rectangles to the 
upper- left of each species. The symbols 
used are courtesy of the Integration 
and Application Network, University 
of Maryland Center for Environmental 
Science (www.ian.umces.edu/symbols).

http://www.ian.umces.edu/symbols
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2020) and providing critical understanding of how a warming climate 
may alter species interactions and distributions (Urban et al., 2016; 
Wisz et al., 2013).

We found support for our hypothesis that snow directly limits 
populations along cold edges, but that prey and habitat availability 
have strong direct and indirect positive effects, respectively. As pre-
dicted, snow had a direct and negative effect on bobcats and coyotes. 
Prior studies have found these species to have a negative association 
with deep snow (Dowd et al., 2014; Reed et al., 2017), likely due to lim-
ited mobility that can contribute to starvation (Bekoff & Wells, 1981; 
Litvaitis et al., 1986). Snow had a negative effect on fishers, but this 
effect was weak in contrast with other studies (e.g., Zielinski et al., 
2017). However, the availability of primary prey species, which were 
generally higher in low biomass forests, countered the negative ef-
fect of snow for these carnivores, indicating the importance of food in 
areas with adverse climate. Indeed, the reliance on a diversity of prey, 
and larger prey species in particular, is important for northern bobcat 
and coyote populations during winter (Litvaitis et al., 1986; Litvaitis & 
Harrison, 1989; Newbury & Hodges, 2018). Similar results have been 
found for fishers living in deep snow regions (Jensen & Humphries, 
2019; McLellan et al., 2018), supporting our findings. However, harsh 
winters may only benefit certain segments of a population (e.g., adult 
males, Litvaitis et al., 1986). More generally, our results provide insight 
on how warmer winters and an abundant prey base that includes tem-
perate and boreal species may fuel range expansion for carnivore pop-
ulations along cold limits (Sirén & Morelli, 2020).

Our study highlights the negative effect that competitors have on 
populations along warm limits, consistent with the long- standing hy-
pothesis that biotic interactions are more influential along warm range 
boundaries (Louthan et al., 2015). Moreover, our results also indicate 
strong support for iRLT. For example, snow had a strong positive ef-
fect on lynx and marten occupancy along their warm limits. These re-
sults are consistent with other studies (Hostetter et al., 2020; Hoving 
et al., 2005; Jensen & Humphries, 2019; Ray et al., 2018). However, 
there was also evidence of an indirect effect for lynx; snow depth- 
mediated occupancy of coyotes and bobcats, its primary competitors 
that had a negative effect on lynx occupancy. Moreover, there was a 
positive, indirect effect of snow on martens through a direct negative 
effect of snow on coyotes. This was less prominent than the coyote/
bobcat– lynx relationship but is aligned with our hypothesis of how 
climate mediates competition along warm limits and also potentially 
explains the positive association with snow commonly identified by 
other studies (see review in Sirén & Morelli, 2020).

We were surprised by the strong negative effect that coyotes 
had on martens. Although martens are known to be preyed upon 
by coyotes, more common predators include fishers and red fox 
(McCann et al., 2010; Sirén, 2013). We hypothesized that fishers 
would be the primary competitor as they are phylogenetically simi-
lar and previous correlative work provides evidence of competitive 
interactions (Jensen & Humphries, 2019; Manlick et al., 2017). It is 
plausible that the strong negative effect that coyotes had on mar-
tens represents a cascading effect that coyotes have on the rest of 

the carnivore community (Jensen & Humphries, 2019). Indeed, we 
found that this species had a strong impact on other species. For 
example, several carnivores had a shared positive relationship with 
deer that may indicate carrion provisioning by this top carnivore 
(Jensen & Humphries, 2019; Prugh & Sivy, 2020; Sivy et al., 2017). 
Coyotes, and also bobcats, kill deer in northern regions (Litvaitis 
& Harrison, 1989; Major & Sherburne, 1987), potentially providing 
scavenging opportunities for fishers and red fox, and explaining 
the positive associations these carnivores had with deer. However, 
positive associations do not mean that competitive interactions are 
absent at other scales (Prugh & Sivy, 2020; Sivy et al., 2017). For in-
stance, coyotes have been shown to be a dominant competitor of red 
fox at local scales (Major & Sherburne, 1987). In addition, although 
the occupancy– abundance relationship for territorial carnivores is 
strong (e.g., Linden et al., 2017), the coarse- scale resolution of occu-
pancy data might preclude a nuanced understanding of competitive 
interactions between species. Clearly, more community- level de-
mographic studies are needed to differentiate the true competitors 
from the indirect ones. Future research could compare competitive 
dynamics using occupancy versus abundance and include dietary 
analyses to better assess niche dynamics and the role of coyotes on 
the ecological community.

From a lynx conservation perspective, we found that a combi-
nation of competitors limit this federally threatened species along 
its southern range boundary. In particular, coyotes, bobcats, and, re-
cently, fisher are considered the primary threat to lynx populations in 
the conterminous United States (Bayne et al., 2008; McLellan et al., 
2018; Peers et al., 2013). The negative effect of coyotes on lynx was 
evident but less certain for bobcats. However, we found bobcats to 
have the greatest potential impact on lynx occupancy through the 
indirect effect of snow and associations with similar prey. Bobcats 
and lynx are phylogenetically similar (Koen et al., 2014) and can have 
similar diets (Ivan & Shenk, 2016; Litvaitis et al., 1986; Newbury & 
Hodges, 2018); thus, competition between these species should be 
fierce and result in exclusion at broad spatial scales (Godsoe et al., 
2017). Indeed, these species rarely co- occurred during our study, 
whereas coyotes and fishers overlapped considerably with lynx. 
Furthermore, the opposite effect that red squirrels had on lynx (neg-
ative) and bobcats (positive) may suggest that bobcats (and poten-
tially fishers and martens) are preventing lynx from accessing this 
important secondary prey species. Because snowpack is expected 
to decline in the northeastern United States and elsewhere along the 
southern limit of lynx range (Diro & Sushama, 2020), the concern is 
that bobcat will outcompete lynx and contribute to ongoing range 
contraction along its warm limit (Peers et al., 2013). Our study pro-
vides convincing evidence for this possibility and suggests that nat-
ural resource managers may need to consider innovative solutions 
to alleviate these biotic constraints or accept the change in distribu-
tions. We see several potential management actions, including: (a) 
protecting climate change refugia through land conservation plan-
ning (Morelli et al., 2016), (b) managing forests to increase snowpack 
retention and promote boreal forest (Dickerson- Lange et al., 2017), 
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and (c) directly controlling competitors (e.g., predator management). 
Although challenging, these decisions are timely considering that 
lynx were recently recommended for delisting (US Fish & Wildlife 
Service, 2017).

By using SEM, we were able to show that abiotic factors and biotic 
interactions can be intercorrelated. The effect of these intercorrela-
tions has been demonstrated through simulation (Godsoe et al., 2017) 
and cited as a reason why many past studies might have failed to detect 
the role of biotic interactions along warm range limits (Sexton et al., 
2009; Sirén & Morelli, 2020). This issue was resolved using SEM, which 
allows for the inclusion of correlated predictors to identify direct and 
indirect effects on a response (Grace, 2008). Besides using SEM, we 
also collected large- scale data on biotic interactors (i.e., competitors 
and prey) and sampled beyond the range limit of several species. Both 
of these approaches have been advocated by previous work (Wisz et al., 
2013) to understand causes of range limits. As such, we were able to 
show that abiotic stress mediates competition along warm range limits 
and that positive biotic factors can ameliorate harsh climate along cold 
limits. Ideally, though, experimental work coupled with demographic 
studies will confirm these dynamics.

Our modeling approach has some caveats worth noting. We 
adopted a two- stage approach in which we generated estimates 
of the occupancy states that we then used in the SEM. Although 
this is the standard approach (e.g., Mills et al., 2020; Sivy et al., 
2017), it does not incorporate uncertainty of the occupancy state 
in the SEM, and hence the errors do not propagate. We partially 
remedied this by modeling occupancy using a saturated model to 
maximally explain spatial variation in occupancy. An alternative ap-
proach, developed by Joseph et al., (2016), jointly integrates occu-
pancy modeling and SEM. However, it is unclear how to perform 
this integration using piecewise SEMs, the approach we used in this 
study. As SEM approaches become increasingly adopted to analyze 
observational data using hierarchical models, we suggest further 
methodological development and guidance of integrated SEMs 
(sensu Joseph et al., 2016) and encourage users to understand the 
implications for modeling choices in the generation of estimates of 
the underlying state.

Because biotic interactions are important along warm limits, cli-
mate envelope models might provide inaccurate predictions, espe-
cially given that novel conditions are expected from climate change 
that may dramatically alter community dynamics. Provided that 
climate mediates competition between highly similar species (e.g., 
lynx and bobcat), climate envelope models might capture relative 
changes in carnivore distributions. However, suitable habitat condi-
tions that provide prey for carnivores will likely change at a slower 
rate than climate (Wang et al., 2016) and potentially allow for popu-
lation persistence in some regions. This asynchronous dynamic may 
be especially important for species such as martens that require a 
combination of abiotic and biotic factors to fulfill life- history re-
quirements and are considered threatened by climate and land- use 
change (Carroll, 2007). We suggest using theoretical and analyti-
cal frameworks such as iRLT and SEM, respectively, to disentangle 
these factors. Once direct and indirect effects are known, they can 

be used as a heuristic tool for understanding which actions can be 
used to conserve threatened species and manage those expected 
to win out.
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