21 research outputs found

    Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions

    Get PDF
    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone recep

    Whole body and hepatic insulin action in normal, starved, and diabetic rats

    No full text
    In normal (N), 3-days starved (S), and streptozotocin-treated (65 mg/kg) 3-days diabetic (D) rats we examined the in vivo dose-response relationship between plasma insulin levels vs. whole body glucose uptake (BGU) and inhibition of hepatic glucose production (HGP) in conscious rats, as determined with the four-step sequential hyperinsulinemic euglycemic clamp technique, combined with [3-3H]glucose infusion. Twelve-hour fasting (basal) HGP was 3.0 ± 0.2, 2.1 ± 0.2, and 5.4 ± 0.5 mg/min in N, S, and D rats, respectively. Next, all rats were clamped at matched glycemia (6 mM). Lowering plasma glucose in D rats from ±20 to 6.0 mM did not increase plasma norepinephrine, epinephrine, glucagon, and corticosterone levels. For BGU, insulin sensitivity was increased (70 ± 11 µU/ml) in S and unchanged (113 ± 21 µU/ml) in D compared with N rats (105 ± 10 µU/ml). Insulin responsiveness was unchanged (12.4 ± 0.8 mg/min) in S and decreased (8.5 ± 0.8 mg/min) in D compared with N rats (12.3 ± 0.7 mg/min). For HGP, insulin sensitivity was unchanged (68 ± 10 µU/ml) in S and decreased (157 ± 21 µU/ml) in D compared with N rats (71 ± 5 µU/ml). Insulin responsiveness was identical among N, S, and D rats (complete suppression of HGP). In summary, 1) insulin resistance in D rats is caused by hepatic insensitivity and by a reduction in BGU responsiveness. 2) S rats show normal hepatic insulin action, but insulin sensitivity for BGU is increased. Therefore, S and D rats both suffering from a comparable catabolic state (10-15% body wt loss in 3 days) show opposite effects on in vivo insulin action. This indicates that in vivo insulin resistance in D rats is not caused by the catabolic state per se.

    Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents

    No full text
    Diabetes mellitus: pathophysiological changes and therap

    Gene expression changes in the brain of a Cushing's syndrome mouse model

    No full text
    Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO(2.0) mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO(2.0) mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO(2.0) mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.Metabolic health: pathophysiological trajectories and therap

    Circadian disruption impairs glucose homeostasis in male but not in female mice and is dependent on gonadal sex hormones

    No full text
    Circadian disruption (CD) is the consequence of a mismatch between endogenous circadian rhythms and behavior, and frequently occurs in shift workers. CD has often been linked to impairment of glucose and lipid homeostasis. It is, however, unknown if these effects are sex dependent. Here, we subjected male and female C57BL/6J mice to 6-h light phase advancements every 3 days to induce CD and assessed glucose and lipid homeostasis. Within this model, we studied the involvement of gonadal sex hormones by injecting mice with gonadotropin-releasing hormone-antagonist degarelix. We demonstrate that CD has sex-specific effects on glucose homeostasis, as CD elevated fasting insulin levels in male mice while increasing fasting glucose levels in female mice, which appeared to be independent of behavior, food intake, and energy expenditure. Absence of gonadal sex hormones lowered plasma insulin levels in male mice subjected to CD while it delayed glucose clearance in female mice subjected to CD. CD elevated plasma triglyceride (TG) levels and delayed plasma clearance of TG-rich lipoproteins in both sexes, coinciding with reduced TG-derived FA uptake by adipose tissues. Absence of gonadal sex hormones did not notably alter the effects of CD on lipid metabolism. We conclude that CD causes sex-dependent effects on glucose metabolism, as aggravated by male gonadal sex hormones and partly rescued by female gonadal sex hormones. Future studies on CD should consider the inclusion of both sexes, which may eventually contribute to personalized advice for shift workers.Metabolic health: pathophysiological trajectories and therap

    Aging attenuates diurnal lipid uptake by brown adipose tissue

    No full text
    Brown adipose tissue (BAT) contributes to cardiometabolic health by taking up glucose and lipids for oxidation, a process that displays a strong diurnal rhythm. While aging has been shown to reduce thermogenic characteristics of BAT, it is as yet unknown whether this reduction is specific to the time of day. Therefore, we assessed whole-body and BAT energy metabolism in young and middle-aged male and female C57BL/6J mice and studied the consequences for lipid metabolism in humanized APOE*3-Leiden.CETP mice (also on a C57BL/6J background). We demonstrate that in middle-aged versus young mice body temperature is lower in both male and female mice, while uptake of triglyceride (TG)-derived fatty acids (FAs) by BAT, reflecting metabolic activity, is attenuated at its peak at the onset of the dark (wakeful) phase in female mice. This coincided with delayed plasma clearance of TG-rich lipoproteins and TG-depleted lipoprotein core remnants, and elevated plasma TGs at the same time point. Furthermore, middle-aged female mice showed increased adiposity, accompanied by lipid accumulation, increased expression of genes involved in lipogenesis, and reduced expression of genes involved in fat oxidation and the intracellular clock machinery in BAT. Peak abundance of lipoprotein lipase (LPL), a crucial regulator of FA uptake, was attenuated in BAT. Our findings suggest that LPL is a potential therapeutic target for restoring diurnal metabolic BAT activity, and that efficiency of strategies targeting BAT may be improved by including time of day as an important factor.</p

    Circadian disruption impairs glucose homeostasis in male but not in female mice and is dependent on gonadal sex hormones

    No full text
    Circadian disruption (CD) is the consequence of a mismatch between endogenous circadian rhythms and behavior, and frequently occurs in shift workers. CD has often been linked to impairment of glucose and lipid homeostasis. It is, however, unknown if these effects are sex dependent. Here, we subjected male and female C57BL/6J mice to 6-h light phase advancements every 3 days to induce CD and assessed glucose and lipid homeostasis. Within this model, we studied the involvement of gonadal sex hormones by injecting mice with gonadotropin-releasing hormone-antagonist degarelix. We demonstrate that CD has sex-specific effects on glucose homeostasis, as CD elevated fasting insulin levels in male mice while increasing fasting glucose levels in female mice, which appeared to be independent of behavior, food intake, and energy expenditure. Absence of gonadal sex hormones lowered plasma insulin levels in male mice subjected to CD while it delayed glucose clearance in female mice subjected to CD. CD elevated plasma triglyceride (TG) levels and delayed plasma clearance of TG-rich lipoproteins in both sexes, coinciding with reduced TG-derived FA uptake by adipose tissues. Absence of gonadal sex hormones did not notably alter the effects of CD on lipid metabolism. We conclude that CD causes sex-dependent effects on glucose metabolism, as aggravated by male gonadal sex hormones and partly rescued by female gonadal sex hormones. Future studies on CD should consider the inclusion of both sexes, which may eventually contribute to personalized advice for shift workers
    corecore