62 research outputs found

    Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei

    Get PDF
    Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration

    Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction

    No full text
    Cellular mechanisms of CO2 chemoreception are discussed and debated in terms of the stimuli produced during hypercapnic acidosis and their molecular targets: protons generated by the hydration of CO2 and dissociation of carbonic acid, which target membrane-bound proteins and lipids in brain stem neurons. The CO2 hydration reaction, however, is not the only reaction that CO2 undergoes that generates molecules capable of modifying proteins and lipids. Molecular CO2 also reacts with peroxynitrite (ONOO−), a reactive nitrogen species (RNS), which is produced from nitric oxide (•NO) and superoxide (•O2−). The CO2/ONOO− reaction, in turn, produces additional nitrosative and oxidative reactive intermediates. Furthermore, protons facilitate additional redox reactions that generate other reactive oxygen species (ROS). ROS/RNS generated by these redox reactions may act as additional stimuli of CO2 chemoreceptors since neurons in chemosensitive areas produce both •NO and •O2− and, therefore, ONOO−. Perturbing •NO, •O2−, and ONOO− activities in chemosensitive areas modulates cardiorespiration. Moreover, neurons in at least one chemosensitive area, the solitary complex, are stimulated by cellular oxidation. Together, these data raise the following two questions: 1) do pH and ROS/RNS work in tandem to stimulate CO2 chemoreceptors during hypercapnic acidosis; and 2) does nitrosative stress and oxidative stress contribute to CO2 chemoreceptor dysfunction? To begin considering these two issues and their implications for central chemoreception, this minireview has the following three goals: 1) summarize the nitrosative and oxidative reactions that occur during hypercapnic acidosis and isocapnic acidosis; 2) review the evidence that redox signaling occurs in chemosensitive areas; and 3) review the evidence that neurons in the solitary complex are stimulated by cellular oxidation
    corecore