976 research outputs found

    Canonical quantization of macroscopic electrodynamics in a linear, inhomogeneous magneto-electric medium

    Full text link
    We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its ability to accommodate strong dispersion and loss, our theory provides a rigorous foundation for the study of quantum optical processes in structures incorporating metamaterials, provided these may be modeled as magneto-electric media. Previous canonical treatments of dielectric and magneto-dielectric media have expressed the electromagnetic field operators in either a Green function or mode expansion representation. Here we present our results in the mode expansion picture with a view to applications in guided wave and cavity quantum optics.Comment: Submitted to Physical Review A 24/07/201

    Coupled-mode theory for periodic side-coupled microcavity and photonic crystal structures

    Full text link
    We use a phenomenological Hamiltonian approach to derive a set of coupled mode equations that describe light propagation in waveguides that are periodically side-coupled to microcavities. The structure exhibits both Bragg gap and (polariton like) resonator gap in the dispersion relation. The origin and physical significance of the two types of gaps are discussed. The coupled-mode equations derived from the effective field formalism are valid deep within the Bragg gaps and resonator gaps.Comment: 13 pages, 6 figure

    Optical injection and terahertz detection of the macroscopic Berry curvature

    Full text link
    We propose an experimental scheme to probe the Berry curvature of solids. Our method is sensitive to arbitrary regions of the Brillouin zone, and employs only basic optical and terahertz techniques to yield a background free signal. Using semiconductor quantum wells as a prototypical system, we discuss how to inject Berry curvature macroscopically, and probe it in a way that provides information about the underlying microscopic Berry curvature.Comment: 4 pages, accepted in Physical Review Letter

    Truly unentangled photon pairs without spectral filtering

    Full text link
    We demonstrate that an integrated silicon microring resonator is capable of efficiently producing photon pairs that are completely unentangled; such pairs are a key component of heralded single photon sources. A dual-channel interferometric coupling scheme can be used to independently tune the quality factors associated with the pump and signal and idler modes, yielding a biphoton wavefunction with Schmidt number arbitrarily close to unity. This will permit the generation of heralded single photon states with unit purity.Comment: 5 pages, 3 figure

    Tailoring second-harmonic generation in birefringent poled fiber via Twist

    No full text
    We predict theoretically and demonstrate experimentally the ability to generate and control the strengths of various second-harmonic signals in birefringent poled fiber. This is done by simply twisting the fiber

    Coherent spin dynamics in quantum wells in quantizing magnetic field

    Full text link
    We investigate theoretically the coherent longitudinal and transversal spin relaxation of photoexcited electrons in quantum wells in quantized magnetic fields. We find the relaxation time for typical quantum well parameters between 100 and 1000 ps. For a realistic random potential the relaxation process depends on the electron energy and g-factor, demonstrating oscillations in the spin polarization accompanying the spin relaxation. The dependence of spin relaxation on applied field, and thus on the corresponding "magnetic" length, can be used to characterize the spatial scale of disorder in quantum wells.Comment: 13 pages, 4 figure

    Second and Third Harmonic Generation in Metal-Based Nanostructures

    Full text link
    We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.Comment: 33 pages, including 11 figures and 74 references; corrected affiliations and some typo
    corecore