6 research outputs found

    Focus on adolescents with HIV and AIDS

    Get PDF
    KMAdolescents living with HIV, including those infected perinatally and non-perinatally, bear a disproportionate burden of the HIV epidemic in South Africa. This article discusses HIV management in adolescents including the following aspects: (i) burden of HIV disease, modes of HIV acquisition and implications for management; (ii) initiation of combination antiretroviral therapy (ART), outcomes and complications of ART in adolescents,including virological failure and switching regimens; (iii) adherence in adolescence, including factors that may contribute to poor adherence and advice to improve adherence; (iv) issues particular to adolescents, including sexual and reproductive health needs, disclosure to adolescents and by adolescents, and transition to adult care. This article aims to provide insights based on the literature and experience to assist the clinician to navigate the difficulties of managing HIV in adolescence and achieving successful transition to adult care

    Lamivudine monotherapy in children and adolescents: The devil is in the detail

    Get PDF
    Although expanded access to antiretroviral therapy (ART), and starting lifelong ART as soon as possible after diagnosis of HIV, have dramatically improved survival and reduced morbidity in HIV-infected children and adolescents, ~20% of children will develop virological failure (VF). Children and adolescents may be at higher risk of VF and drug resistance for a number of reasons, including prevention of mother-to-child exposure, reliance on a caregiver to administer ART, poor palatability of paediatric drugs, tuberculosis/HIV co-treatment in protease inhibitor (PI) (mainly lopinavir/ritonavir)-based regimens, and adolescence being associated with poor adherence. In children with VF, if adherence issues are addressed and re-suppression is not achieved, a switch to second- or third-line drugs may be indicated, which is the gold standard in management. However, in the face of ongoing adherence challenges, with potential accumulation of resistance mutations, limited treatment options due to extensive resistance and limited approved paediatric formulations, other strategies have been used. These include continuing a failing PI regimen, switching to a holding regimen (one or more nucleoside reverse transcriptase inhibitors) or discontinuing ART. Lamivudine monotherapy is a common choice when holding regimens are used, on the premise that the lamivudine-associated M184V resistance mutation reduces viral replication and may maintain clinical and immunological stability compared with discontinuing treatment altogether. However, this strategy is generally associated with immunological, and in some cases clinical, decline after starting lamivudine monotherapy. We discuss the pros and cons of using this therapy in children. We also propose guidance for using lamivudine monotherapy, suggesting clinical and immunological criteria for its use. Close monitoring and adherence support are required with this approach. Given many new emerging ART drugs and strategies, lamivudine monotherapy should be administered temporarily, while efforts to improve adherence are implemented. It should not be considered a default option in children with VF

    Lamivudine monotherapy in children and adolescents: The devil is in the detail

    Get PDF
    Although expanded access to antiretroviral therapy (ART), and starting lifelong ART as soon as possible after diagnosis of HIV, have dramatically improved survival and reduced morbidity in HIV-infected children and adolescents, ~20% of children will develop virological failure (VF). Children and adolescents may be at higher risk of VF and drug resistance for a number of reasons, including prevention of mother-to-child exposure, reliance on a caregiver to administer ART, poor palatability of paediatric drugs, tuberculosis/HIV co-treatment in protease inhibitor (PI) (mainly lopinavir/ritonavir)-based regimens, and adolescence being associated with poor adherence. In children with VF, if adherence issues are addressed and re-suppression is not achieved, a switch to second- or third-line drugs may be indicated, which is the gold standard in management. However, in the face of ongoing adherence challenges, with potential accumulation of resistance mutations, limited treatment options due to extensive resistance and limited approved paediatric formulations, other strategies have been used. These include continuing a failing PI regimen, switching to a holding regimen (one or more nucleoside reverse transcriptase inhibitors) or discontinuing ART. Lamivudine monotherapy is a common choice when holding regimens are used, on the premise that the lamivudine-associated M184V resistance mutation reduces viral replication and may maintain clinical and immunological stability compared with discontinuing treatment altogether. However, this strategy is generally associated with immunological, and in some cases clinical, decline after starting lamivudine monotherapy. We discuss the pros and cons of using this therapy in children. We also propose guidance for using lamivudine monotherapy, suggesting clinical and immunological criteria for its use. Close monitoring and adherence support are required with this approach. Given many new emerging ART drugs and strategies, lamivudine monotherapy should be administered temporarily, while efforts to improve adherence are implemented. It should not be considered a default option in children with VF

    Lamivudine monotherapy as a holding regimen for HIV-positive children

    No full text
    Background In resource-limited settings holding regimens, such as lamivudine monotherapy (LM), are used to manage HIV-positive children failing combination antiretroviral therapy (cART) to mitigate the risk of drug resistance developing, whilst adherence barriers are addressed or when access to second- or third-line regimens is restricted. We aimed to investigate characteristics of children placed on LM and their outcomes. Methods We describe the characteristics of children (age 90 days we describe their immunologic outcomes on LM and their immunologic and virologic outcomes after resuming cART. Findings We included 228 children in our study. At LM start their median age was 12.0 years (IQR 7.3–14.6), duration on cART was 3.6 years (IQR 2.0–5.9) and median CD4 count was 605.5 cells/μL (IQR 427–901). Whilst 110 (48%) had no prior protease inhibitor (PI)-exposure, of the 69 with recorded PI-exposure, 9 (13%) patients had documented resistance to all PIs. After 6 months on LM, 70% (94/135) experienced a drop in CD4, with a predicted average CD4 decline of 46.5 cells/μL (95% CI 37.7–55.4). Whilst on LM, 46% experienced a drop in CD4 to <500 cells/μL, 18 (8%) experienced WHO stage 3 or 4 events, and 3 children died. On resumption of cART the average gain in CD4 was 15.65 cells/uL per month and 66.6% (95% CI 59.3–73.7) achieved viral suppression (viral load <1000) at 6 months after resuming cART. Interpretation Most patients experienced immune decline on LM. Its use should be avoided in those with low CD4 counts, but restricted use may be necessary when treatment options are limited. Managing children with virologic failure will continue to be challenging until more treatment options and better adherence strategies are available
    corecore