11 research outputs found

    Solid-phase peptide synthesis in highly loaded conditions

    No full text
    The use of very highly substituted resins has been avoided for peptide synthesis due to the aggravation of chain-chain interactions within beads. To better evaluate this problem, a combined solvation-peptide synthesis approach was herein developed taking as models, several peptide-resins and with peptide contents values increasing up to near 85%. Influence of peptide sequence and loading to solvation characteristics of these compounds was observed. Moreover, chain-chain distance and chain concentration within the bead were also calculated in different loaded conditions. of note, a severe shrinking of beads occurred during the alpha-amine deprotonation step only when in heavily loaded resins, thus suggesting the need for the modification of the solvent system at this step. Finally, the yields of different syntheses in low and heavily loaded conditions were comparable, thus indicating the feasibility of applying this latter prohibitive chemical synthesis protocol. We thought these results might be basically credited to the possibility, without the need of increasing molar excess of reactants, of carrying out the coupling reaction in higher concentration of reactants - near three to seven folds - favored by the use of smaller amount of resin. Additionally, the alteration in the solvent system at the alpha-amine deprotonation step might be also improving the peptide synthesis when in heavily loaded experimental protocol.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Evaluation of 4-tert-Butyl-Benzhydrylamine Resin (BUBHAR) as an Alternative Solid Support for Peptide Synthesis

    No full text
    Following preliminary reports that introduced 4-tert-butylbenzhydrylamine resin (BUBHAR) as a novel polymer for use in solid-phase peptide chemistry (SPPS), some physical-chemical properties of its structure, certainly relevant for its application in this methodology, were compared with those of the largely used methylbenzhydrylamine resin (MBHAR). In order to rule out possible MBHAR-related commercial source effects for SPPS, we initially compared MBHAR batches acquired from three different manufacturers with homemade BUBHARs. The bead solvation properties of these two resins in solvents used in the tert-butyl (Boc-based) SPPS technique indicated that the mean swelling values of these solid supports (% volume of solvated bead occupied by the solvent) were 51% and 67% for MBHAR and BUBHAR, respectively. This result strongly suggests a good potential for the latter polymer in terms of application for application in SPPS. In order to move forward with this approach, the synthesis of the carboxy-terminal peptide fragment (Gln-Asn-Cys-Pro-(D-Arg)-Gly-amide) of the antidiuretic hormone, desmopressin ([3-Mpa∗-Tyr-Phe-Gln-Asn-Cys-Pro-(D-Arg)-Gly-amide], ∗1-[3-mercaptopropionic acid]), which our laboratory is producing routinely in large scale for the Health Secretary of Sao Paulo State. The comparative synthesis was conducted using these two resins with similar substitution degrees (~0.7 mmol/g). In contrast to MBHAR, surprisingly no need for a Gln⟶Asn recoupling reaction was observed when BUBHAR was used. This result might be due to improved solvation of the desmopressin C-terminal Asn-Cys-Pro-(D-Arg)-Gly-segment when bound to this latter resin as observed by microscopic swelling degrees of peptide-resin beads and also by greater mobility detected of peptide chains within the BUBHAR polymer backbone. This finding was determined by comparative electron paramagnetic resonance (EPR) of both peptide resins attaching the amino acid-type paramagnetic 2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (Toac) spin label early introduced by our group
    corecore