66 research outputs found

    Construction and characterization of a multilayered gingival keratinocyte culture model : the TURK-U model

    Get PDF
    In construction of epithelial cells as multilayers, the cells are grown submerged to confluence on fibroblast-embedded collagen gels and, then, lifted to air to promote their stratification. We recently demonstrated that gingival epithelial cells form uniform monolayers on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium, which allows the cells to grow at an air-liquid-solid interface from the beginning of the culturing protocol. In this study, the aim was to further develop our previous model to form a multilayered gingival epithelial culture model. Two different epithelial cell lines (HaCaT from skin and HMK from gingiva) were used in all experiments. Both cell lines were grown first as monolayers for 3 days. After that, keratinocytes were trypsinized, counted and seeded on a sterile semi-permeable nitrocellulose membrane placed on the top of a semi-solid growth medium, forming an air-liquid-solid interface for the cells to grow. At days 1, 4, and 7, epithelial cells were fixed, embedded in paraffin, and sectioned for routine Hematoxylin-Eosin staining and immunohistochemistry for cytokeratin (Ck). At day 1, HMK cells grew as monolayers, while HaCaT cells stratified forming an epithelium with two to three layers. At day 4, a stratified epithelium in the HMK model had four to five layers and its proliferation continued up to day 7. HaCaT cells formed a dense and weakly proliferating epithelium with three to four layers of stratification at day 4 but the proliferation disappeared at day 7. At all days, both models were strongly positive for Ck5, Ck7, and Ck 19, and weakly positive for Ck10. Gingival epithelial cells stratify successfully on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium. This technique allows researchers to construct uniform gingival epithelial cell multilayers at an air-liquid-solid interface, without using collagen gels, resulting in a more reproducible method.Peer reviewe

    Cyclic dinucleotides in oral bacteria and in oral biofilms

    Get PDF
    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two “decision-making” signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.</p

    Regulation of gingival epithelial cytokine response by bacterial cyclic dinucleotides

    Get PDF
    Background: Cyclic dinucleotides (cyclic di-guanosine monophosphate (c-di-GMP) and cyclic di-adenosine monophosphate (c-di-AMP)) and lipopolysaccharides (LPS) are pathogen-associated molecular patterns (PAMPs). Individual impacts of PAMPs on immune system have been evaluated, but simultaneous actions of multiple PAMPs have not been studied. Objective: Examination the effects of cyclic dinucleotides and Porphyromonas gingivalis LPS on gingival epithelial cytokine response. Methods: Human gingival keratinocytes (HMK) were incubated with 1, 10, and 100 ”M concentrations of c-di-GMP and c-di-AMP, either in the presence or absence of P. gingivalis LPS. Intra- and extracellular levels of interleukin (IL)-1ÎČ, IL-8, IL-1Ra, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF), were measured using the Luminex technique. Results: LPS decreased extracellular IL-8 levels, while the presence of c-di-AMP inhibited this effect. Incubating HMK cells with c-di-AMP (alone or with LPS) elevated the extracellular level of MCP-1. Extracellular VEGF level increased when cells were incubated with LPS and c-di-GMP together, or with c-di-AMP alone. LPS and c-di-AMP suppressed intracellular IL-1ÎČ levels. The c-di-AMP elevated intracellular levels of IL-1Ra. Conclusion: c-di-AMP and, to a lesser extent, c-di-GMP regulate keratinocyte cytokine response, either as an aggregator or as a suppressor of LPS, depending on the cytokine type.</p

    Global proteomics of fibroblast cells treated with bacterial cyclic dinucleotides, c-di-GMP and c-di-AMP

    Get PDF
    Background: Constant exposure of human gingival fibroblasts (HGFs) to oral pathogens trigger selective immune responses. Recently, the activation of immune response to cyclic dinucleotides (CDNs) via STING has come to the forefront. Reports show that other proteins outside the STING-TBK1-IRF3 axis respond to CDNs but a global view of impacted proteome in diverse cells is lacking. HGFs are constantly exposed to bacterial-derived cyclic-di-adenosine monophosphate (c-di-AMP) and cyclic-di-guanosine monophosphate (c-di-GMP).Aim: To understand the response of HGFs to bacterial-derived CDNs, we carried out a global proteomics analysis of HGFs treated with c-di-AMP or c-di-GMP.Methods: The expression levels of several proteins modulated by CDNs were examined.Results: Interferon signaling proteins such as Ubiquitin-like protein ISG15 (ISG15), Interferon-induced GTP-binding protein Mx1 (MX1), Interferon-induced protein with tetratricopeptide repeats (IFIT) 1 (IFIT1), and (IFIT3) were significantly upregulated. Interestingly, other pathways not fully characterized to be regulated by CDNs, such as necroptosis signaling, iron homeostasis signaling, protein ubiquitination, EIF2 signaling, sumoylation and nucleotide excision repair pathways were also modulated by the bacterial-derived CDNs.Conclusion: This study has added to the increasing appreciation that beyond the regulation of cytokine production via STING, cyclic dinucleotides also broadly affect many critical processes in human cells.</p

    Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers

    Get PDF
    A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence(i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The firstprototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop of a novel application of twice-as-smart ligands, as efficnt chemical sensors of bacterial signaling pathways via the fluorescentdetection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP)

    Bacterial Cyclic Dinucleotides and the cGAS–cGAMP–STING Pathway: A Role in Periodontitis?

    Get PDF
    Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.</p

    Global proteomics insights for a novel small compound targeting the non-integrin Laminin Receptor in a macrophage cell model

    Get PDF
    Introduction: Monocytes and macrophages are the first barrier of the innate immune system, which interact with agents causing osteoarthritis or other conditions, leading to the release of proinflammatory mediators that exacerbate inflammation.Methods: The aim of this study was to investigate the proteomic changes in THP-1 monocytes differentiated to macrophages, pre- or -post small compound treatments and in the presence or absence of a proinflammatory stimulus, Lipopolysaccharide (LPS). This study aimed to discover and isolate small compounds that mimic the interaction between Pigment derived growth factor (PEDF) and its 37/67 kDa Laminin receptor (LR) with potential anti-inflammatory activity.Results: Our results suggested that novel compounds targeting the LR-PEDF interface can be useful for modulating anti-inflammatory effects. Several compounds were selected based on in silico docking at the PEDF/LR interface and examined for their ability to reduce IL-1ÎČ expression in a macrophage cell model. Compound C3 showed the highest efficacy in reducing IL-1ÎČ expression in the presence of LPS proinflammatory stimulus. Proteomics analysis revealed that C3 treatment altered the global proteomic profile of THP-1 activated macrophages, affecting pathways such as MYC targets, oxidative phosphorylation, and mTORC1 signaling.Discussion: The analysis also highlighted the involvement of key regulators, including RPSA and MYC, and their interactions with other proteins such as ribosome proteins and cell cycle regulators. Furthermore, the downregulated proteome analysis revealed shared and unique pathways affected by the treatments, including processes related to actin cytoskeleton, translation, and the inflammatory response. Protein-protein interaction networks suggested the potential involvement of transcription factors like MYC and the interconnectedness of signaling pathways in mediating such as the effects of the treatments. Overall, these findings provide valuable insights into the potential anti-inflammatory activity and underlying mechanisms of compound C3, emphasizing its relevance for further investigation in the context of inflammatory conditions

    A Pro-Drug Approach for Selective Modulation of AI-2-Mediated Bacterial Cell-to-Cell Communication

    Get PDF
    The universal quorum sensing autoinducer, AI-2, is utilized by several bacteria. Analogs of AI-2 have the potential to modulate bacterial behavior. Selectively quenching the communication of a few bacteria, in the presence of several others in an ecosystem, using analogs of AI-2 is non-trivial due to the ubiquity of AI-2 processing receptors in many bacteria that co-exist. Herein, we demonstrate that when an AI-2 analog, isobutyl DPD (which has been previously shown to be a quorum sensing, QS, quencher in both Escherichia coli and Salmonella typhimurium) is modified with ester groups, which get hydrolyzed once inside the bacterial cells, only QS in E. coli, but not in S. typhimurium, is inhibited. The origin of this differential QS inhibition could be due to differences in analog permeation of the bacterial membranes or ester hydrolysis rates. Such differences could be utilized to selectively target QS in specific bacteria amongst a consortium of other species that also use AI-2 signaling

    A rapid assay for affinity and kinetics of molecular interactions with nucleic acids

    Get PDF
    The Differential Radial Capillary Action of Ligand Assay (DRaCALA) allows detection of protein interactions with low-molecular weight ligands based on separation of the protein–ligand complex by differential capillary action. Here, we present an application of DRaCALA to the study of nucleic acid–protein interactions using the Escherichia coli cyclic AMP receptor protein (CRP). CRP bound in DRaCALA specifically to 32P-labeled oligonucleotides containing the consensus CRP binding site, but not to oligonucleotides with point mutations known to abrogate binding. Affinity and kinetic studies using DRaCALA yielded a dissociation constant and dissociation rate similar to previously reported values. Because DRaCALA is not subject to ligand size restrictions, whole plasmids with a single CRP-binding site were used as probes, yielding similar results. DNA can also function as an easily labeled carrier molecule for a conjugated ligand. Sequestration of biotinylated nucleic acids by streptavidin allowed nucleic acids to take the place of the protein as the immobile binding partner. Therefore, any molecular interactions involving nucleic acids can be tested. We demonstrate this principle utilizing a bacterial riboswitch that binds cyclic-di-guanosine monophosphate. DRaCALA is a flexible and complementary approach to other biochemical methods for rapid and accurate measurements of affinity and kinetics at near-equilibrium conditions
    • 

    corecore