110 research outputs found

    Suggestibility as a trait of personality

    Full text link
    Thesis (M.A.)--Boston Universit

    Junior Recital: Brandon Sinnock, Horn

    Get PDF
    Kemp Recital Hall Saturday Evening November 19, 1994 7:30p.m

    Charles W. Bolen Faculty Recital Series: Andrew Rummel, Tuba; Gloria Cardoni-Smith, Piano; Brandon Sinnock, Horn; October 13, 2009

    Get PDF
    Center for the Performing ArtsOctober 13, 2009Tuesday Evening8:00 p.m

    Demonstration of a Lightguide Detector for Liquid Argon TPCs

    Get PDF
    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector

    Absorption of Scintillation Light in a 100 \ell Liquid Xenonγ\gamma Ray Detector and Expected Detector Performance

    Full text link
    An 800L liquid xenon scintillation γ\gamma ray detector is being developed for the MEG experiment which will search for μ+e+γ\mu^+\to\mathrm{e}^+\gamma decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm3^3 to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and α\alpha sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.Comment: 18 pages, 10 figures (eps). Submitted to Nucl. Instr. and Meth.

    Rayleigh Scattering in Rare Gas Liquids

    Full text link
    The Rayleigh scattering length has been calculated for rare-gas liquids in the ultraviolet for the frequencies at which they luminesce. The calculations are based on the measured dielectric constants in the gas phase, except in the case of xenon for which measurements are available in the liquid. The scattering length mayplace constraints on the design of some large-scale detectors, using uv luminescence, being proposed to observe solar neutrinos and dark matter. Rayleigh scattering in mixtures of rare-gas mixtures is also discussed.Comment: 8 pages, 4 tables; This version corrects erratum in table and has expanded discussion in Section II. Accepred for publication in NIM

    Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    Get PDF
    Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors.The index of refraction of liquid argon at the scin- tillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship.Comment: 11 pages, 4 figure

    Derivation of a Waste Package Source Term for NNWSI from the Results of Laboratory Experiments

    Get PDF
    Results are performed for the dissolution of Turkey Point pressurized water reactor (PWR) spent fuel in J-13 well water at ambient hot cell temperatures. These results are compared with those previously obtained on Turkey Point fuel in deionized water, on H.B. Robinson PWR fuel in J-13 water, and by other workers using various fuels in dilute bicarbonate groundwaters. A model is presented that represents the conditions under which maximum dissolution of spent fuel could occur in a repository sited at Yucca Mountain, Nevada. Using an experimentally determined upper limit of 5 mg/l for uranium solubility in J-13 water, a fractional release rate of 6.4 x 10{sup -8} per year is obtained by assuming that all water entering the repository carries away the maximum amount of uranium. 14 refs., 3 figs., 3 tabs
    corecore