182 research outputs found

    After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions

    No full text
    Introduction Previous work in the language domain has shown that 10 Hz rTMS of the left or right posterior inferior frontal gyrus (pIFG) in the prefrontal cortex impaired phonological decision-making, arguing for a causal contribution of the bilateral pIFG to phonological processing. However, the neurophysiological correlates of these effects are unclear. The present study addressed the question whether neural activity in the prefrontal cortex could be modulated by 10 Hz tACS and how this would affect phonological decisions. Methods In three sessions, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the bilateral prefrontal cortex before task processing. Resting state EEG was recorded before and after tACS. We also recorded EEG during task processing. Results Relative to sham stimulation, 10 Hz tACS significantly facilitated phonological response speed. This effect was task-specific as tACS did not affect a simple control task. Moreover, 10 Hz tACS significantly increased theta power during phonological decisions. The individual increase in theta power was positively correlated with the behavioral facilitation after 10 Hz tACS. Conclusion Our results show a facilitation of phonological decisions after 10 Hz tACS over the bilateral prefrontal cortex. This might indicate that 10 Hz tACS increased task-related activity in the stimulated area to a level that was optimal for phonological performance. The significant correlation with the individual increase in theta power suggests that the behavioral facilitation might be related to increased theta power during language processing

    A novel approach to measure brain-to-brain spatial and temporal alignment during positive empathy

    Get PDF
    : Empathy is defined as the ability to vicariously experience others' suffering (vicarious pain) or feeling their joy (vicarious reward). While most neuroimaging studies have focused on vicarious pain and describe similar neural responses during the observed and the personal negative affective involvement, only initial evidence has been reported for the neural responses to others' rewards and positive empathy. Here, we propose a novel approach, based on the simultaneous recording of multi-subject EEG signals and exploiting the wavelet coherence decomposition to measure the temporal alignment between ERPs in a dyad of interacting subjects. We used the Third-Party Punishment (TPP) paradigm to elicit the personal and vicarious experiences. During a positive experience, we observed the simultaneous presence in both agents of the Late Positive Potential (LPP), an ERP component related to emotion processing, as well as the existence of an inter-subject ERPs synchronization in the related time window. Moreover, the amplitude of the LPP synchronization was modulated by the presence of a human-agent. Finally, the localized brain circuits subtending the ERP-synchronization correspond to key-regions of personal and vicarious reward. Our findings suggest that the temporal and spatial ERPs alignment might be a novel and direct proxy measure of empathy

    Multiple-Brain connectivity during third party punishment: an EEG hyperscanning study

    Get PDF
    Compassion is a particular form of empathic reaction to harm that befalls others and is accompanied by a desire to alleviate their suffering. This altruistic behavior is often manifested through altruistic punishment, wherein individuals penalize a deprecated human's actions, even if they are directed toward strangers. By adopting a dual approach, we provide empirical evidence that compassion is a multifaceted prosocial behavior and can predict altruistic punishment. In particular, in this multiple-brain connectivity study in an EEG hyperscanning setting, compassion was examined during real-time social interactions in a third-party punishment (TPP) experiment. We observed that specific connectivity patterns were linked to behavioral and psychological intra- and interpersonal factors. Thus, our results suggest that an ecological approach based on simultaneous dual-scanning and multiple-brain connectivity is suitable for analyzing complex social phenomena

    Online effects of beta-tACS over the left prefrontal cortex on phonological decisions

    Get PDF
    The left posterior inferior frontal gyrus in the prefrontal cortex is a key region for phonological aspects of language processing. A previous study has shown that alpha-tACS over the prefrontal cortex applied before task processing facilitated phonological decision-making and increased task-related theta power. However, it is unclear how alpha-tACS affects phonological processing when applied directly during the task. Moreover, the frequency specificity of this effect is also unclear since the majority of neurostimulation studies tested a single frequency only. The present study addressed the question whether and how 10 Hz online tACS affects phonological decisions. To this end, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the left prefrontal cortex during task processing in three sessions. As an unexpected finding, 16.18 Hz significantly impaired task accuracy relative to sham stimulation, without affecting response speed. There was no significant difference in phonological task performance between 10 Hz and 16.18 Hz tACS or between 10 Hz and sham stimulation. Our results support the functional relevance of the left prefrontal cortex for phonological decisions and suggest that online beta-tACS may modulate language comprehension

    PB15. Neurophysiological biomarker for the clinical development of tuberous sclerosis [Abstract]

    Get PDF
    Aim To investigate the neuronal networks in children with tuberous sclerosis complex (TS) undergoing treatment with Everolimus. Methods Sleep and wake electroencephalography (EEG) before and one year after the start of the treatment with Everolimus were investigated in 13 patients with TS. To investigate functional and effective connectivity within the network generating the delta and theta activity in the background sleep and wake EEG, the methods of dynamic imaging of coherent sources (DICS) and renormalized partial directed coherence (RPDC) were applied. Results Sources before the treatment. Independent of location of the tubera and severity of epilepsy, delta activity in the background EEG pattern in patients with TS was associated with the sources in the medial prefrontal cortex, the supplementary motor area and the putamen during sleep. Theta waves during sleep were associated with sources in the prefrontal cortex, sensory cortex, hippocampus and the thalamus. The sources of delta frequency during wakefulness were identified at the posterior parietal cortex, the parahippocampal gyrus and the Broca area. Sources at theta frequency were found at the sensorymotor cortex, the prefrontal cortex, the primary visual cortex and the thalamus at awake state. Sources after the treatment. The sources one year after the start of the therapy, for both delta and delta frequencies were located in the same areas as before, however with a significantly weaker strength of coherence. The RPDC analysis at baseline showed strong bidirectional connections between described sources. The RPDC analyses after the one year of treatment showed significantly weaker unidirectional connections within the described network. At the follow up patients were grouped in two groups; group 1: five patients with >50% reduction of seizures and spike wave index, group 2: eight patients with <50% reduction of seizures and spike wave index. Interestingly, at follow up patients from the group 1 had decreased values in absolute power of the sources, coherence values and strength of connections. Whereas, patients from the group 2 had increased values in all above mentioned parameters. Conclusion The current study described the neuronal network in children with severe epilepsies due to TS. Regardless of the locations of the tubera the DICS analyses showed a complex network of cortical and subcortical sources with strong bidirectional connections. The described network was significantly weaker after one year under the treatment with Everolimus and appears to be characteristic for the children with TS and severe epilepsy

    Multimodal alterations of directed connectivity profiles in patients with attention-deficit/hyperactivity disorders

    Get PDF
    Functional and effective connectivity measures for tracking brain region interactions that have been investigated using both electroencephalography (EEG) and magnetoencephalography (MEG) bringing up new insights into clinical research. However, the differences between these connectivity methods, especially at the source level, have not yet been systematically studied. The dynamic characterization of coherent sources and temporal partial directed coherence, as measures of functional and effective connectivity, were applied to multimodal resting EEG and MEG data obtained from 11 young patients (mean age 13.2 ± 1.5 years) with attention-deficit/hyperactivity disorder (ADHD) and age-matched healthy subjects. Additionally, machine-learning algorithms were applied to the extracted connectivity features to identify biomarkers differentiating the two groups. An altered thalamo-cortical connectivity profile was attested in patients with ADHD who showed solely information outflow from cortical regions in comparison to healthy controls who exhibited bidirectional interregional connectivity in alpha, beta, and gamma frequency bands. We achieved an accuracy of 98% by combining features from all five studied frequency bands. Our findings suggest that both types of connectivity as extracted from EEG or MEG are sensitive methods to investigate neuronal network features in neuropsychiatric disorders. The connectivity features investigated here can be further tested as biomarkers of ADHD

    Unmet Needs in Children With Attention Deficit Hyperactivity Disorder—Can Transcranial Direct Current Stimulation Fill the Gap? Promises and Ethical Challenges

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is a disorder most frequently diagnosed in children and adolescents. Although ADHD can be effectively treated with psychostimulants, a significant proportion of patients discontinue treatment because of adverse events or insufficient improvement of symptoms. In addition, cognitive abilities that are frequently impaired in ADHD are not directly targeted by medication. Therefore, additional treatment options, especially to improve cognitive abilities, are needed. Because of its relatively easy application, well-established safety, and low cost, transcranial direct current stimulation (tDCS) is a promising additional treatment option. Further research is needed to establish efficacy and to integrate this treatment into the clinical routine. In particular, limited evidence regarding the use of tDCS in children, lack of clear translational guidelines, and general challenges in conducting research with vulnerable populations pose a number of practical and ethical challenges to tDCS intervention studies. In this paper, we identify and discuss ethical issues related to research on tDCS and its potential therapeutic use for ADHD in children and adolescents. Relevant ethical issues in the tDCS research for pediatric ADHD center on safety, risk/benefit ratio, information and consent, labeling problems, and nonmedical use. Following an analysis of these issues, we developed a list of recommendations that can guide clinicians and researchers in conducting ethically sound research on tDCS in pediatric ADHD

    Neuronal networks in children with continuous spikes and waves during slow sleep

    Get PDF
    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations correspond to both initiation and propagation pathways. The deactivations in structures of the default mode network are consistent with the concept of epileptiform activity impacting on normal brain function by inducing repetitive interruptions of neurophysiological functio

    Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics

    Full text link
    Loss of cortical integration and changes in the dynamics of electrophysiological brain signals characterize the transition from wakefulness towards unconsciousness. The common mechanism underlying these observations remains unknown. In this study we arrive at a basic model, which explains these empirical observations based on the theory of phase transitions in complex systems. We studied the link between spatial and temporal correlations of large-scale brain activity recorded with functional magnetic resonance imaging during wakefulness, propofol-induced sedation and loss of consciousness, as well as during the subsequent recovery. We observed that during unconsciousness activity in frontal and thalamic regions exhibited a reduction of long-range temporal correlations and a departure of functional connectivity from the underlying anatomical constraints. These changes in dynamics and anatomy-function coupling were correlated across participants, suggesting that temporal complexity and an efficient exploration of anatomical connectivity are inter-related phenomena. A model of a system exhibiting a phase transition reproduced our findings, as well as the diminished sensitivity of the cortex to external perturbations during unconsciousness. This theoretical framework unifies different empirical observations about brain activity during unconsciousness and predicts that the principles we identified are universal and independent of the causes behind loss of awareness.Comment: to appear in Journal of the Royal Society Interfac

    With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging

    Get PDF
    In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40-70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode array
    • …
    corecore