8,030 research outputs found
Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines
The present study deals with the utilization of fines generated from comminution process (crushing, grinding and screening) of the Run of Mines into value added products i.e. fluxed iron ore pellets. The study comprises to understand the physical and mechanical behavior of five distinguished chemical compositions of green and dried iron ore pellets with respect to a typical Mini Blast furnace (MBF) burden data and furnace operating parameter. The maximum basicity of pellets was calculated 2.37 to make slag neutral when blast furnace runs at 100% high ash coke (avg. ash content= 29%). The crushing strength and drop number of various green pellets were measured. Green Crushing Strength was decreased with increasing lime fines. The addition of lime fines as a burnt lime, which has acicular structure creates less plasticity and brittle like fracture occurred. Due to formation of hard CaCO3 layer on the surface, after increasing lime contain crushing strength was increased in the air and oven dry pellets with respect to acid pellet (0% lime fines addition). [How to cite this article: Sarkar, A., Mandal, A.K., and Sinha, O.P. (2013) Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines. International Journal of Science and Engineering, 5(2),9-14. Doi: 10.12777/ijse.5.2.9-14
The Quantum Effective Mass Hamilton-Jacobi Problem
In this article, the quantum Hamilton- Jacobi theory based on the position
dependent mass model is studied. Two effective mass functions having different
singularity structures are used to examine the Morse and Poschl- Teller
potentials. The residue method is used to obtain the solutions of the quantum
effective mass- Hamilton Jacobi equation. Further, it is shown that the
eigenstates of the generalized non-Hermitian Swanson Hamiltonian for Morse and
Poschl-Teller potentials can be obtained by using the Riccati equation without
solving a differential equation
RanDumb: a simple approach that questions the efficacy of continual representation learning
We propose RanDumb to examine the efficacy of continual representation learning. RanDumb embeds raw pixels using a fixed random transform which approximates an RBF-Kernel, initialized before seeing any data, and learns a simple linear classifier on top. We present a surprising and consistent finding: RanDumb significantly outperforms the continually learned representations using deep networks across numerous continual learning benchmarks, demonstrating the poor performance of representation learning in these scenarios. RanDumb stores no exemplars and performs a single pass over the data, processing one sample at a time. It complements GDumb [39], operating in a lowexemplar regime where GDumb has especially poor performance. We reach the same consistent conclusions when RanDumb is extended to scenarios with pretrained models replacing the random transform with pretrained feature extractor. Our investigation is both surprising and alarming as it questions our understanding of how to effectively design and train models that require efficient continual representation learning, and necessitates a principled reinvestigation of the widely explored problem formulation itself. Our code is available here
Elasticity of Stiff Biopolymers
We present a statistical mechanical study of stiff polymers, motivated by
experiments on actin filaments and the considerable current interest in polymer
networks. We obtain simple, approximate analytical forms for the
force-extension relations and compare these with numerical treatments. We note
the important role of boundary conditions in determining force-extension
relations. The theoretical predictions presented here can be tested against
single molecule experiments on neurofilaments and cytoskeletal filaments like
actin and microtubules. Our work is motivated by the buckling of the
cytoskeleton of a cell under compression, a phenomenon of interest to biology.Comment: Submitted for publication, five pages, three figure
Zooming into the coexisting regime of ferromagnetism and superconductivity in ErRh4B4 single crystals
High resolution measurements of the dynamic magnetic susceptibility are
reported for ferromagnetic re-entrant superconductor, ErRhB.
Detailed investigation of the coexisting regime reveals unusual
temperature-asymmetric and magnetically anisotropic behavior. The
superconducting phase appears via a series of discontinuous steps upon warming
from the ferromagnetic normal phase, whereas the ferromagnetic phase develops
via a gradual transition. A model based on local field inhomogeneity is
proposed to explain the observations
Recommended from our members
Targeting the vasopressin type-2 receptor for renal cell carcinoma therapy.
Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth. Examination of the cancer genome atlas (TCGA) database, and analysis of human RCC tumor tissue microarrays, cDNA arrays and tumor biopsy samples demonstrated V2R expression and activity in clear cell RCC (ccRCC). In vitro, V2R antagonists OPC31260 and Tolvaptan, or V2R gene silencing reduced wound closure and cell viability of 786-O and Caki-1 human ccRCC cell lines. Similarly in mouse xenograft models, Tolvaptan and OPC31260 decreased RCC tumor growth by reducing cell proliferation and angiogenesis, while increasing apoptosis. In contrast, the V2R agonist dDAVP significantly increased tumor growth. High intracellular cAMP levels and ERK1/2 activation were observed in human ccRCC tumors. In mouse tumors and Caki-1 cells, V2R agonists reduced cAMP and ERK1/2 activation, while dDAVP treatment had the reverse effect. V2R gene silencing in Caki-1 cells also reduced cAMP and ERK1/2 activation. These results provide novel evidence for a pathogenic role of V2R signaling in ccRCC, and suggest that inhibitors of the AVP-V2R pathway, including the FDA-approved drug Tolvaptan, could be utilized as novel ccRCC therapeutics
Molecular elasticity and the geometric phase
We present a method for solving the Worm Like Chain (WLC) model for twisting
semiflexible polymers to any desired accuracy. We show that the WLC free energy
is a periodic function of the applied twist with period 4 pi. We develop an
analogy between WLC elasticity and the geometric phase of a spin half system.
These analogies are used to predict elastic properties of twist-storing
polymers. We graphically display the elastic response of a single molecule to
an applied torque. This study is relevant to mechanical properties of
biopolymers like DNA.Comment: five pages, one figure, revtex, revised in the light of referee's
comments, to appear in PR
- …