13,340 research outputs found

    Scattering states of a particle, with position-dependent mass, in a PT{\cal{PT}} symmetric heterojunction

    Full text link
    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian PT{\cal{PT}} symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian PT{\cal{PT}} symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.Comment: 12 pages, including 6 figures; Journal of Physics A : Math. Theor. (2012

    Boundary crossing Random Walks, clinical trials and multinomial sequential estimation

    Get PDF
    A sufficient condition for the uniqueness of multinomial sequential unbiased estimators is provided generalizing a classical result for binomial samples. Unbiased estimators are applied to infer the parameters of multidimensional or multinomial Random Walks which are observed until they reach a boundary. An application to clinical trials is presented

    Position and structure of the subtropical/Azores front region from combined Lagrangian and remote sensing (IR/altimeter/SeaWIFS) measurements

    Get PDF
    The position and structure of the North Atlantic Subtropical Front is studied using Lagrangian flow tracks and remote sensing (AVHRR imagery: TOPEX/POSEIDON altimetry: SeaWiFS) in a broad region ( similar to 31 degree to similar to 36 degree N) of marked gradient of dynamic height (Azores Current) that extends from the Mid-Atlantic Ridge (MAR), near similar to 40 degree W, to the Eastern Boundary ( similar to 10 degree W). Drogued Argos buoy and ALACE tracks are superposed on infrared satellite images in the Subtropical Front region. Cold (cyclonic) structures, called storms, and warm (anticyclonic) structures of 100-300 km in size can be found on the south side of the Subtropical Front outcrop, which has a temperature contrast of about 1 degree C that can be followed for similar to 2500 km near 35 degree N. Warmer water adjacent to the outcrop is flowing eastward (Azores Current) but some warm water is returned westward about 300 km to the south (southern Counterflow). Estimates of horizontal diffusion in a Storm (D=2.2t10 super(2) m super(2) s super(-1)) and in the Subtropical Front region near 200 m depth (D sub(x)=1.3t10 super(4) m super(2) s super(-1), D sub(y)=2.6t10 super(3) m super(2) s super(-1)) are made from the Lagrangian tracks. Altimeter and in situ measurements show that Storms track westwards. Storms are separated by about 510 km and move westward at 2.7 km d super(-1). Remote sensing reveals that some initial structures start evolving as far east as 23 degree W but are more organized near 29 degree W and therefore Storms are about 1 year old when they reach the MAR (having travelled a distance of 1000 km). Structure and seasonality in SeaWiFS data in the region is examined

    Seeing a c-theorem with holography

    Full text link
    There is no known model in holography exhibiting a cc-theorem where the central charges of the dual CFT are distinct. We examine a holographic model of RG flows in a framework where the bulk gravity theory contains higher curvature terms. The latter allows us to distinguish the flow of the central charges aa and cc in the dual field theories in four dimensions. One finds that the flow of aa is naturally monotonic but that of cc is not. Extending the analysis of holographic RG flows to higher dimensions, we are led to formulate a novel c-theorem in arbitrary dimensions for a universal coefficient appearing in the entanglement entropy of the fixed point CFT's.Comment: 5 pages, 1 figure, v2: minor change

    Coupling of Transport and Chemical Processes in Catalytic Combustion

    Get PDF
    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics

    Extracting Weak Phase Information from B -> V_1 V_2 Decays

    Get PDF
    We describe a new method for extracting weak, CP-violating phase information, with no hadronic uncertainties, from an angular analysis of B -> V_1 V_2 decays, where V_1 and V_2 are vector mesons. The quantity sin⁥2(2β+γ)\sin^2 (2\beta + \gamma) can be cleanly obtained from the study of decays such as B_d^0(t) -> D^{*\pm} \rho^\mp, D^{*\pm} a_1^{\mp}, D^{*0} K^{*0}, etc. Similarly, one can use B_s^0(t) -> D_s^{*\pm} K^{*\mp} to extract sin⁥2γ\sin^2 \gamma. There are no penguin contributions to these decays. It is possible that sin⁥2(2β+γ)\sin^2 (2\beta + \gamma) will be the second function of CP phases, after sin⁥2β\sin 2\beta, to be measured at B-factories.Comment: 4 pages, RevTeX, no figure

    Proceedings of the 77th Annual Road School

    Get PDF

    When Queueing Meets Coding: Optimal-Latency Data Retrieving Scheme in Storage Clouds

    Full text link
    In this paper, we study the problem of reducing the delay of downloading data from cloud storage systems by leveraging multiple parallel threads, assuming that the data has been encoded and stored in the clouds using fixed rate forward error correction (FEC) codes with parameters (n, k). That is, each file is divided into k equal-sized chunks, which are then expanded into n chunks such that any k chunks out of the n are sufficient to successfully restore the original file. The model can be depicted as a multiple-server queue with arrivals of data retrieving requests and a server corresponding to a thread. However, this is not a typical queueing model because a server can terminate its operation, depending on when other servers complete their service (due to the redundancy that is spread across the threads). Hence, to the best of our knowledge, the analysis of this queueing model remains quite uncharted. Recent traces from Amazon S3 show that the time to retrieve a fixed size chunk is random and can be approximated as a constant delay plus an i.i.d. exponentially distributed random variable. For the tractability of the theoretical analysis, we assume that the chunk downloading time is i.i.d. exponentially distributed. Under this assumption, we show that any work-conserving scheme is delay-optimal among all on-line scheduling schemes when k = 1. When k > 1, we find that a simple greedy scheme, which allocates all available threads to the head of line request, is delay optimal among all on-line scheduling schemes. We also provide some numerical results that point to the limitations of the exponential assumption, and suggest further research directions.Comment: Original accepted by IEEE Infocom 2014, 9 pages. Some statements in the Infocom paper are correcte
    • …
    corecore