10 research outputs found

    Metal Pollution Indices of Bottom Sediment and Surface Water Affected by Acid Mine Drainage

    No full text
    Sediments are normally the final pathway of both natural and anthropogenic components produced or derived from the environment. Sediment quality is a good indicator of pollution in the water column, where heavy metals and other organic pollutants tend to concentrate. Metals are introduced in aquatic systems as a result of the weathering of soils and rocks, from volcanic eruptions, and from a variety of human activities involving the mining, processing, or use of metals and/or substances that contain metal pollutants. Heavy metal concentration in the water column can be relatively low in some cases, but the concentrations in the sediment may be elevated. The presented work aimed to investigate the pollutant levels of some heavy metals (Fe, Mn, Al, Cu, Zn, As, Cd, Pb) in the water and sediments related to acid mine drainage (AMD) produced from an abandoned sulphide mine in Smolnik in Eastern Slovakia. A metal pollution index was used to compare the total content of metals at five sampling stations. The level of partitioning of the metals between the surface water and sediments in the area was calculated using Partition coefficients and the correlation coefficients between the metal pairs in both media were calculated by a Pearson coefficient

    Year over year comparison of sediment quality in the rivers of Eastern Slovakia

    No full text
    Quality is one of the most important risk indicators in river basins. Therefore, monitoring and evaluating water and sediment quality has a very important role in process of risk management. The aim of the monitoring is provide for the sustainability of water bodies and these results are the basis for the risk management in the river catchment area. Hornad, Laborec and Poprad are the rivers in Eastern Slovakia. Hornad and Laborec belongs to basin of Danube and Poprad belongs to basin of Vistula. Sediment sampling was carried out according to ISO 5667-6. Monitoring was carried out in the spring on 2017–2018. The chemical composition of sediments was determined by means of X-ray fluorescence (XRF) using SPECTRO iQ II (Ametek, Germany, 2000). The results of sediment quality evaluated by method PERI revealed that the quality of sediment in 2018 was better than 2017. Results of XRF analysis of sediments were compared with the limited values according to the Slovak Act 188/2003 Coll. of Laws on the application of treated sludge and bottom sediments to fields. It can be state that limit values comparing with Slovak legislation were not exceeding in all sediment samples in rivers in Eastern Slovakia. Based on the monitoring data of sediment quality in the study area, a quantitative analysis of heavy-metal pollution in sediment was conducted using the method of potential ecological risk index (PERI) which is method for evaluate the potential ecological risk of heavy metals. It is based exclusively on chemical parameters of sediments because sediment data show mean integrated values in time, with higher stability than water column parameters; sediments are easily sampled at field work; sediment samples are more representative for time and space scales and analytical data are easily obtained, especially because sediments present high concentrations of contaminants, decreasing the possible errors due to detection limits of the applied analytical method. This method comprehensively considers the synergy, toxic level, concentration of the heavy metals and ecological sensitivity of heavy metals. Potential ecological risk index can be obtained using three basic modules: degree of contamination (CD), toxic-response factor (TR) and potential ecological risk factor (ER). The results show on the basis on potential ecological risk index that the quality of sediment in 2018 is better than 2017. The worst result shows Hornad in 2017. Significant improvement occurred at the sampling point S2 in Hornad in 2018. The best results show Laborec in 2018. The results show on the basis on potential ecological risk index that quality of sediment in 2018 is better than 2017

    Investigation of Building Materials’ Radioactivity in a Historical Building—A Case Study

    No full text
    The paper investigates a possible hazard originating from natural radionuclides in building materials in a selected historical building being reconstructed for housing. Both outdoor and indoor risks were evaluated through the radiological indices and estimated doses, based on measured activities of natural radionuclides in stone and brick materials of the building. The average measured activity concentrations of radionuclides were 7.32 Bq/kg for 226Ra, 40.05 Bq/kg for 232Th, and 546.64 Bq/kg for 40K radionuclides. The average total activity concentration in building materials (594.0 Bq/kg) exceeded the world average value. A correlation was found between the potassium content in the building material samples and the total activity of radionuclides. The gamma indices, Iγ, calculated for the samples, ranged in an interval of 0.26–0.60, not exceeding the restricted limit for bulk materials Iγ = 1. The average annual effective dose due to building materials was 0.53 mSv/y, which does not exceed the limit (1 mSv/y), however, it contributes to a gamma dose excess that is higher than recommended (0.3 mSv/y at the most). The bricks were responsible for a higher level of natural radiation than natural stone material. Nevertheless, based on the radiation protection requirements, it can be concluded that the building can be used for residential purposes after the reconstruction, as no significant human health impact is expected due to the radioactivity of building materials

    Quality of the bottom sediments in the area affected by mining activities

    No full text
    The remains of human activities may be seen in several places of the landscape in positive or negative form. Probably the most common phenomenon that fundamentally impacts the country is mining activity. The environmental problems caused by mining have attracted a great deal of research attention and led to development of numerous sediment heavy metal contamination assessment methods, including the index method, the dynamic method, the synthesis methods in chemistry, ecology and toxicology, etc. This research was undertaken in order to determine and analyze selected heavy metals present in sediment samples collected from different sampling localities inside and around water reservoir Ruzin, Slovakia. Reservoir and its inflows are located in the vicinity of region with historical Cu, Fe, Ag, Au-deposit, which was exploited from the 14th century to 1990 and currently causing environmental burden. For the determination of sediments quality different methods (XRD and XRF analysis) have been used. Based on the obtained data of analysis, potential ecological risk indices were used to study the pollution status of heavy metals in sediments and assess their potential ecological risk to environment. The calculated potential ecological risk indicates the level of water environment pollution by heavy metals in the sampling localities in the studied area

    Study of heavy metals stratification in sediment in reservoir Ruzin (Slovakia)

    No full text
    Silting of water reservoirs by bottom sediments is one of the major problems of their service. Industrial wastes, geochemical structure and metals mining create a potential source of heavy metal pollution in the aquatic environment especially in sediment. Water reservoir Ruzin located in east Slovakia is one of the most contaminated sites by heavy metals originating from mining activity. The paper deals with the study of sediment quality from three different deep sampling sites from Ruzin reservoir by using of XRF, XRD analysis and the determination of the effect of pH on the redistribution of metals in sediment-water system

    Metal Pollution Indices of Bottom Sediment and Surface Water Affected by Acid Mine Drainage

    No full text
    Sediments are normally the final pathway of both natural and anthropogenic components produced or derived from the environment. Sediment quality is a good indicator of pollution in the water column, where heavy metals and other organic pollutants tend to concentrate. Metals are introduced in aquatic systems as a result of the weathering of soils and rocks, from volcanic eruptions, and from a variety of human activities involving the mining, processing, or use of metals and/or substances that contain metal pollutants. Heavy metal concentration in the water column can be relatively low in some cases, but the concentrations in the sediment may be elevated. The presented work aimed to investigate the pollutant levels of some heavy metals (Fe, Mn, Al, Cu, Zn, As, Cd, Pb) in the water and sediments related to acid mine drainage (AMD) produced from an abandoned sulphide mine in Smolnik in Eastern Slovakia. A metal pollution index was used to compare the total content of metals at five sampling stations. The level of partitioning of the metals between the surface water and sediments in the area was calculated using Partition coefficients and the correlation coefficients between the metal pairs in both media were calculated by a Pearson coefficient

    Effects of physical treatment of hemp fibers on fiber structure and biocomposite properties

    No full text
    This article concerning natural cellulose fibers as reinforcement in composite materials in civil engineering. In this paper, the attention is given to industrial hemp specifically to the woody part of hemp plant called hemp hurds. The properties of natural fibers are mainly determined by the chemical and physical composition, such as structure of fibers. The objective of presented research is to characterize raw and physically treated hemp fibers using Fourier transform infrared spectroscopy method. These natural fibers were used as filler into biocomposites and MgO-cement was used as alternative binder. Physico — mechanical properties (compressive strength, thermal conductivity, absorbability) of prepared composites were determined

    Properties Characterization of Chemically Modified Hemp Hurds

    No full text
    The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differential scanning calorimetry). Size exclusion chromatography (SEC) measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH
    corecore