4,345 research outputs found

    A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals

    Full text link
    Although quasi-two-dimensional organic superconductors such as κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 seem to be very clean systems, with apparent quasiparticle mean-free paths of several thousand \AA, the superconducting transition is intrinsically broad (e.g ∼1\sim 1 K wide for Tc≈10T_c \approx 10 K). We propose that this is due to the extreme anisotropy of these materials, which greatly exacerbates the statistical effects of spatial variations in the potential experienced by the quasiparticles. Using a statistical model, we are able to account for the experimental observations. A parameter xˉ\bar{x}, which characterises the spatial potential variations, may be derived from Shubnikov-de Haas oscillation experiments. Using this value, we are able to predict a transition width which is in good agreement with that observed in MHz penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte

    Thermal radiation of various gravitational backgrounds

    Get PDF
    We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasi--classical tunneling of particles through a gravitational barrier. We show that our procedure can reproduce the results of Hawking and Unruh radiation. We also show that under certain kinds of coordinate transformations the temperature of the thermal radiation will change in the case of the Schwarzschild black holes. In addition we apply our procedure to a rotating/orbiting system and show that in this case there is no radiation, which has experimental implications for the polarization of particles in circular accelerators.Comment: 6 pages revtex, added references, publication version. To be published IJMP

    Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model

    Full text link
    We discuss a detailed phase diagram and other microscopic characteristics on the applied magnetic field - temperature (H_a-T) plane for a simple model of correlated fluid represented by a two-dimensional (2D) gas of heavy quasiparticles with masses dependent on the spin direction and the effective field generated by the electron correlations. The consecutive transitions between the Bardeen-Cooper-Schrieffer (BCS) and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or discontinuous, depending on the values of H_a and T. In the latter case, weak metamagnetic transitions occur at the BCS-FFLO boundary. We single out two different FFLO phases, as well as a reentrant behaviour of one of them at high fields. The results are compared with those for ordinary Landau quasiparticles in order to demonstrate the robustness of the FFLO states against the BCS state for the case with spin-dependent masses (SDM). We believe that the mechanism of FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT) superconducting phases benefit from SDM as well.Comment: 10 pages, 4 figure

    Reaction Time of a Group of Physics Students

    Full text link
    The reaction time of a group of students majoring in Physics is reported here. Strong co-relation between fatigue, reaction time and performance have been seen and may be useful for academicians and administrators responsible of working out time-tables, course structures, students counsellings etc.Comment: 10 pages, 4 figure

    Mass movement susceptibility mapping using satellite optical imagery compared with InSAR monitoring: Zigui County, Three Gorges region, China

    Get PDF
    Mass movements on steep slopes are a major hazard to communities and infrastructure in the Three Gorges region, China. Developing susceptibility maps of mass movements is therefore very important in both current and future land use planning. This study employed satellite optical imagery and an ASTER GDEM (15 m) to derive various parameters (namely geology; slope gradient; proximity to drainage networks and proximity to lineaments) in order to create a GIS-based map of mass movement susceptibility. This map was then evaluated using highly accurate deformation signals processed using the Persistent Scatterer (PS) InSAR technique. Areas of high susceptibility correspond well to points of high subsidence, which provides a strong support of our susceptibility map

    Experimental observation of Frohlich superconductivity in high magnetic fields

    Full text link
    Resistivity and irreversible magnetisation data taken within the high-magnetic-field CDWx phase of the quasi-two-dimensional organic metal alpha-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin-depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.Comment: ten pages, four figure

    AMSA Conference Indigenous Workshop Summary

    Get PDF
    This report summarises a two-day Indigenous Workshop at the 2022 Australian Marine Sciences Association Conference. The workshop was the seventh to be supported by the National Environmental Science Program and the most significant to date in terms of Indigenous leadership and attendance. Indigenous participants from 45 language groups joined others from government, research and non-profit agencies. Indigenous organisations expressed a clear desire to work with government and research agencies to enable effective co-development of research, and to establish a nationally coordinated approach to Indigenous-led research and monitoring. The two-day Indigenous workshop brought together Indigenous leaders and community members from across the nation. This was a rare occasion for Indigenous Australians to come together and provide input into two important focal areas. 1. Collaborate and strategise on the research priorities, opportunities and constraints for Indigenous participation and leadership in environmental research in Australia’s marine and coastal regions. 2. Discuss the need for a National Indigenous Environmental Research Network (NIERN)

    Catastrophic Fermi surface reconstruction in the shape-memory alloy AuZn

    Full text link
    AuZn undergoes a shape-memory transition at 67 K. The de Haas van Alphen effect persists to 100 K enabling the observation of a change in the quantum oscillation spectrum indicative of a catastrophic Fermi surface reconstruction at the transition. Coexistence of both Fermi surfaces at low temperatures is suggestive of an intrinsic phase separation in the bulk of the material. In addition, a Dingle analysis reveals a sharp change in the scattering mechanism at a threshold cyclotron radius, which we suggest to be related to the underlying microstructure that drives the shape-memory effect.Comment: 4 pages, 4 figure

    Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2_2

    Get PDF
    We present the structural characterization and low-temperature magnetism of the triangular-lattice delafossite NaYbO2_2. Synchrotron x-ray diffraction and neutron scattering exclude both structural disorder and crystal-electric-field randomness, whereas heat-capacity measurements and muon spectroscopy reveal the absence of magnetic order and persistent spin dynamics down to at least 70\,mK. Continuous magnetic excitations with the low-energy spectral weight accumulating at the KK-point of the Brillouin zone indicate the formation of a novel spin-liquid phase in a triangular antiferromagnet. This phase is gapless and shows a non-trivial evolution of the low-temperature specific heat. Our work demonstrates that NaYbO2_2 practically gives the most direct experimental access to the spin-liquid physics of triangular antiferromagnets.Comment: 6 pages, 4figure
    • …
    corecore