We discuss a detailed phase diagram and other microscopic characteristics on
the applied magnetic field - temperature (H_a-T) plane for a simple model of
correlated fluid represented by a two-dimensional (2D) gas of heavy
quasiparticles with masses dependent on the spin direction and the effective
field generated by the electron correlations. The consecutive transitions
between the Bardeen-Cooper-Schrieffer (BCS) and the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or
discontinuous, depending on the values of H_a and T. In the latter case, weak
metamagnetic transitions occur at the BCS-FFLO boundary. We single out two
different FFLO phases, as well as a reentrant behaviour of one of them at high
fields. The results are compared with those for ordinary Landau quasiparticles
in order to demonstrate the robustness of the FFLO states against the BCS state
for the case with spin-dependent masses (SDM). We believe that the mechanism of
FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT)
superconducting phases benefit from SDM as well.Comment: 10 pages, 4 figure