4,838 research outputs found

    The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit

    Get PDF
    Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity

    Inadequacies in the conventional treatment of the radiation field of moving sources

    Full text link
    There is a fundamental difference between the classical expression for the retarded electromagnetic potential and the corresponding retarded solution of the wave equation that governs the electromagnetic field. While the boundary contribution to the retarded solution for the {\em potential} can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation governing the {\em field} may be neglected only if it diminishes with distance faster than the contribution of the source density in the far zone. In the case of a source whose distribution pattern both rotates and travels faster than light {\em in vacuo}, as realized in recent experiments, the boundary term in the retarded solution governing the field is by a factor of the order of R1/2R^{1/2} {\em larger} than the source term of this solution in the limit that the distance RR of the boundary from the source tends to infinity. This result is consistent with the prediction of the retarded potential that part of the radiation field generated by a rotating superluminal source decays as R−1/2R^{-1/2}, instead of R−1R^{-1}, a prediction that is confirmed experimentally. More importantly, it pinpoints the reason why an argument based on a solution of the wave equation governing the field in which the boundary term is neglected (such as appears in the published literature) misses the nonspherical decay of the field

    The angular dependent magnetoresistance in alpha-(BEDT-TTF)_2KHg(SCN)_4

    Full text link
    In spite of extensive experimental studies of the angular dependent magnetoresistance (ADMR) of the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains elusive. Here we present a new study of ADMR of LTP in alpha-(ET)_2 salts assuming that LTP is unconventional charge density wave (UCDW). In the presence of magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to striking ADMR in UCDW. The present model appears to account for many existing ADMR data of alpha-(BEDT-TTF)_2KHg(SCN)_4 remarkably well.Comment: 6 pages, 4 figure

    Wormholes and Flux Tubes in 5D Kaluza-Klein Theory

    Get PDF
    In this paper spherically symmetric solutions to 5D Kaluza-Klein theory, with ``electric'' and/or ``magnetic'' fields are investigated. It is shown that the global structure of the spacetime depends on the relation between the ``electrical'' and ``magnetic'' Kaluza-Klein fields. For small ``magnetic'' field we find a wormhole-like solution. As the strength of the ``magnetic'' field is increased relative to the strength of the ``electrical'' field, the wormhole-like solution evolves into a finite or infinite flux tube depending on the strengths of the two fields. For the large ``electric'' field case we conjecture that this solution can be considered as the mouth of a wormhole, with the G55G_{55}, G5tG_{5t} and G5Ï•G_{5\phi} components of the metric acting as the source of the exotic matter necessary for the formation of the wormhole's mouth. For the large ``magnetic'' field case a 5D flux tube forms, which is similar to the flux tube between two monopoles in Type-II superconductors, or the hypothesized color field flux tube between two quarks in the QCD vacuum.Comment: 12 pages, 5 eps.figures, REVTEX, Discussion about null surfaces ammended. References added. To be published in PR

    Complex Lagrangians and phantom cosmology

    Get PDF
    Motivated by the generalization of quantum theory for the case of non-Hermitian Hamiltonians with PT symmetry, we show how a classical cosmological model describes a smooth transition from ordinary dark energy to the phantom one. The model is based on a classical complex Lagrangian of a scalar field. Specific symmetry properties analogous to PT in non-Hermitian quantum mechanics lead to purely real equation of motion.Comment: 11 pages, to be published in J.Phys.A, refs. adde

    Charge-density Waves Survive the Pauli Paramagnetic Limit

    Full text link
    Measurements of the resistance of single crystals of (Per)2_2Au(mnt)2_2 have been made at magnetic fields BB of up to 45 T, exceeding the Pauli paramagnetic limit of BP≈37B_{\rm P}\approx 37 T. The continued presence of non-linear charge-density wave electrodynamics at B≥37B \geq 37 T unambiguously establishes the survival of the charge-density wave state above the Pauli paramagnetic limit, and the likely emergence of an inhomogeneous phase analogous to that anticipated to occur in superconductors.Comment: 4 pages, three figure

    Does Magnetic Charge Imply a Massive Photon ?

    Full text link
    In Abelian theories of monopoles the magnetic charge is required to be enormous. Using the electric-magnetic duality of electromagnetism it is argued that the existence of such a large, non-perturbative magnetic coupling should lead to a phase transition where magnetic charge is permanently confined and the photon becomes massive. The apparent masslessness of the photon could then be used as an argument against the existence of such a large, non-perturbative magnetic charge. Finally it is shown that even in the presence of this dynamical mass generation the Cabbibo-Ferrari formulation of magnetic charge gives a consistent theory.Comment: 10 pages LaTe
    • …
    corecore