5 research outputs found

    Spatiotemporal patterning during T cell activation is highly diverse

    No full text
    Temporal and spatial variations in the concentrations of signaling intermediates in a living cell are important for signaling in complex networks because they modulate the probabilities that signaling intermediates will interact with each other. We have studied 30 signaling sensors, ranging from receptors to transcription factors, in the physiological activation of murine ex vivo T cells by antigen-presenting cells. Spatiotemporal patterning of these molecules was highly diverse and varied with specific T cell receptors and T cell activation conditions. The diversity and variability observed suggest that spatiotemporal patterning controls signaling interactions during T cell activation in a physiologically important and discriminating manner. In support of this, the effective clustering of a group of ligand-engaged receptors and signaling intermediates in a joint pattern consistently correlated with efficient T cell activation at the level of the whole cell

    Itk controls the spatiotemporal organization of T cell activation

    No full text
    During T cell activation by antigen-presenting cells (APCs), the diverse spatiotemporal organization of components of T cell signaling pathways modulates the efficiency of activation. Here, we found that loss of the tyrosine kinase interleukin-2 (IL-2)–inducible T cell kinase (Itk) in mice altered the spatiotemporal distributions of 14 of 16 sensors of T cell signaling molecules in the region of the interface between the T cell and the APC, which reduced the segregation of signaling intermediates into distinct spatiotemporal patterns. Activation of the Rho family guanosine triphosphatase Cdc42 at the center of the cell-cell interface was impaired, although the total cellular amount of active Cdc42 remained intact. The defect in Cdc42 localization resulted in impaired actin accumulation at the T cell–APC interface in Itk-deficient T cells. Reconstitution of cells with active Cdc42 that was specifically directed to the center of the interface restored actin accumulation in Itk-deficient T cells. Itk also controlled the central localization of the guanine nucleotide exchange factor SLAT [Switch-associated protein 70 (SWAP-70)–like adaptor of T cells], which may contribute to the activation of Cdc42 at the center of the interface. Together, these data illustrate how control of the spatiotemporal organization of T cell signaling controls critical aspects of T cell function

    Distinct requirements for T-bet in gut innate lymphoid cells

    Get PDF
    Interleukin (IL)-22–producing innate lymphoid cells (ILCs; ILC22) comprise a heterogeneous population of cells that are dependent on the transcription factor retinoid-related orphan γt (RORγt) and are critical for barrier function of the intestinal mucosa. A distinct ILC22 subset expresses the natural cytotoxicity receptor NKp46 (NKp46(+) ILC22); however, the factors that contribute to the generation of this population versus other subsets are largely unknown. Herein, we show that T-bet (encoded by Tbx21) was highly expressed in NKp46(+) ILC22, a feature shared by all NKp46(+) cells present in the intestine but not by other IL-22–producing populations. Accordingly, the absence of T-bet resulted in loss of NKp46(+) ILC22 in the intestinal lamina propria. The residual NKp46(+) ILC22 present in Tbx21(−/−) mice showed a marked reduction of Rorγt expression and impairment in IL-22 production. Generation and functions of gut NK1.1(+) cells were also altered. Bone marrow chimera experiments revealed a cell-intrinsic requirement for T-bet in these subsets and competitive reconstitution experiments revealed roles for T-bet in multiple ILC subsets. Thus, T-bet has a general importance for ILC in the gut and plays a selective and critical role in the generation of NKp46(+) ILC22

    Distinct requirements for T-bet in gut innate lymphoid cells

    No full text
    Interleukin (IL)-22–producing innate lymphoid cells (ILCs; ILC22) comprise a heterogeneous population of cells that are dependent on the transcription factor retinoid-related orphan γt (RORγt) and are critical for barrier function of the intestinal mucosa. A distinct ILC22 subset expresses the natural cytotoxicity receptor NKp46 (NKp46(+) ILC22); however, the factors that contribute to the generation of this population versus other subsets are largely unknown. Herein, we show that T-bet (encoded by Tbx21) was highly expressed in NKp46(+) ILC22, a feature shared by all NKp46(+) cells present in the intestine but not by other IL-22–producing populations. Accordingly, the absence of T-bet resulted in loss of NKp46(+) ILC22 in the intestinal lamina propria. The residual NKp46(+) ILC22 present in Tbx21(−/−) mice showed a marked reduction of Rorγt expression and impairment in IL-22 production. Generation and functions of gut NK1.1(+) cells were also altered. Bone marrow chimera experiments revealed a cell-intrinsic requirement for T-bet in these subsets and competitive reconstitution experiments revealed roles for T-bet in multiple ILC subsets. Thus, T-bet has a general importance for ILC in the gut and plays a selective and critical role in the generation of NKp46(+) ILC22
    corecore