4,336 research outputs found

    The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit

    Get PDF
    Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity

    Exact Schwarzschild-Like Solution for Yang-Mills Theories

    Get PDF
    Drawing on the parallel between general relativity and Yang-Mills theory we obtain an exact Schwarzschild-like solution for SU(2) gauge fields coupled to a massless scalar field. Pushing the analogy further we speculate that this classical solution to the Yang-Mills equations shows confinement in the same way that particles become confined once they pass the event horizon of the Schwarzschild solution. Two special cases of the solution are considered.Comment: 11 pages LaTe

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure

    Complex Lagrangians and phantom cosmology

    Get PDF
    Motivated by the generalization of quantum theory for the case of non-Hermitian Hamiltonians with PT symmetry, we show how a classical cosmological model describes a smooth transition from ordinary dark energy to the phantom one. The model is based on a classical complex Lagrangian of a scalar field. Specific symmetry properties analogous to PT in non-Hermitian quantum mechanics lead to purely real equation of motion.Comment: 11 pages, to be published in J.Phys.A, refs. adde

    On the physical meaning of the Unruh effect

    Full text link
    We present simple arguments that detectors moving with constant acceleration (even acceleration for a finite time) should detect particles. The effect is seen to be universal. Moreover, detectors undergoing linear acceleration and uniform, circular motion both detect particles for the same physical reason. We show that if one uses a circularly orbiting electron in a constant external magnetic field as the Unruh--DeWitt detector, then the Unruh effect physically coincides with the experimentally verified Sokolov--Ternov effect.Comment: 7 pages, 0 figures references added, small changes in text. To be published JETP Lett

    On the relation between Unruh and Sokolov--Ternov effects

    Full text link
    We show that the Sokolov--Ternov effect -- the depolarization of particles in storage rings coming from synchrotron radiation due to spin flip transitions -- is physically equivalent to the Unruh effect for circular acceleration if one uses a spin 1/2 particle as the Unruh--DeWitt detector. It is shown that for the electron, with gyromagnetic number g≈2g \approx 2, the exponential contribution to the polarization, which usually characterizes the Unruh effect, is "hidden" in the standard Sokolov-Ternov effect making it hard to observe. Thus, our conclusions are different in detail from previous work.Comment: 23 pages, no figure

    Brane in 6D with increasing gravitational trapping potential

    Full text link
    A new solution to Einstein equations in (1+5)-spacetime with an embedded (1+3) brane is given. This solution localizes the zero modes of all kinds of matter fields and 4-gravity on the (1+3) brane by an increasing, transverse gravitational potential. This localization occurs despite the fact that the gravitational potential is not a decreasing exponential, and asymptotically approaches a finite value rather than zero.Comment: Revised paper. 6 pages, revtex 4. to be published in PR

    A de Haas-van Alphen study of the filled skutterudite compounds PrOs4_4As12_{12} and LaOs4_4As12_{12}

    Full text link
    Comprehensive magnetic-field-orientation dependent studies of the susceptibility and de Haas-van Alphen effect have been carried out on single crystals of the filled skutterudites PrOs4_4As12_{12} and LaOs4_4As12_{12} using magnetic fields of up to 40~T. Several peaks are observed in the low-field susceptibility of PrOs4_4As12_{12}, corresponding to cascades of metamagnetic transitions separating the low-field antiferromagnetic and high-field paramagnetic metal (PMM) phases. The de Haas-van Alphen experiments show that the Fermi-surface topologies of PrOs4_4As12_{12} in its PMM phase and LaOs4_4As12_{12} are very similar. In addition, they are in reasonable agreement with the predictions of bandstructure calculations for LaOs4_4As12_{12} on the PrOs4_4As12_{12} lattice. Both observations suggest that the Pr 4ff electrons contribute little to the number of itinerant quasiparticles in the PMM phase. However, whilst the properties of LaOs4_4As12_{12} suggest a conventional nonmagnetic Fermi liquid, the effects of direct exchange and electron correlations are detected in the PMM phase of PrOs4_4As12_{12}. For example, the quasiparticle effective masses in PrOs4_4As12_{12} are found to decrease with increasing field, probably reflecting the gradual suppression of magnetic fluctuations associated with proximity to the low-temperature, low-field antiferromagnetic state
    • …
    corecore