37 research outputs found
Novel use of Steinman pin in removal of broken interlocking screws
Broken screws after interlocking nailing of long bones are commonly seen in Orthopaedic practice. Removal of such screws can be difficult particularly the distal part which is often held within the bone. We describe a simple technique of using Steinman pin to aid removal of broken screws in a case of non-union fracture tibia with broken interlocking nail and screws. Steinman pin being easily available and the reproducible technique make it a useful aid for removal of broken interlocking screws
Control of InGaAs facets using metal modulation epitaxy (MME)
Control of faceting during epitaxy is critical for nanoscale devices. This
work identifies the origins of gaps and different facets during regrowth of
InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2
or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated
epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling
up to the mask. The resulting self-aligned FETs were dominated by FET channel
resistance rather than source-drain access resistance. Higher As fluxes led
first to conformal growth, then pronounced {111} facets sloping up away from
the mask.Comment: 18 pages, 7 figure
Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates
We study temperature dependent (200 – 400 K) dielectric current leakage in high-quality, epitaxial chromia films, synthesized on various conductive substrates (Pd, Pt and V2O3). We find that trap-assisted space-charge limited conduction is the dominant source of electrical leakage in the films, and that the density and distribution of charge traps within them is strongly dependent upon the choice of the underlying substrate. Pd-based chromia is found to exhibit leakage consistent with the presence of deep, discrete traps, a characteristic that is related to the known properties of twinning defects in the material. The Pt- and V2O3-based films, in contrast, show behavior typical of insulators with shallow, exponentially-distributed traps. The highest resistivity is obtained for chromia fabricated on V2O3substrates, consistent with a lower total trap density in these films. Our studies suggest that chromia thin films formed on V2O3 substrates are a promising candidate for next-generation spintronics