49,933 research outputs found

    Crystallization of Simple Fluids: Relative Stability of f.c.c. and b.c.c Structures

    Full text link
    A free-energy functional for a crystal that contains both the symmetry conserved and symmetry broken parts of the direct pair correlation function is developed. The free-energy functional is used to investigate the crystallization of fluids interacting via the inverse power potential ; u(r)=ϵ(σ/r)nu(r)=\epsilon {(\sigma/r)}^n. In agreement with simulation results we find that for n=12n=12 the freezing is into close packed f.c.c structure while for soft repulsions (n6)(n\leq 6) b.c.c phase is more stable.Comment: 9 pages, 2 figure

    Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    Get PDF
    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity

    Stochastic Development Regression on Non-Linear Manifolds

    Full text link
    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes

    Severe Fermi Surface Reconstruction at a Metamagnetic-Transition in Ca2x_{2-x}Srx_xRuO4_4 (for 0.2x0.50.2 \leq x \leq 0.5)

    Full text link
    We report an electrical transport study in Ca2x_{2-x}Srx_{x}RuO4_4 single crystals at high magnetic fields (BB). For x=0.2x =0.2, the Hall constant RxyR_{xy} decreases sharply at an anisotropic metamagnetic (MM) transition reaching its value for Sr2_2RuO4_4 at high fields. A sharp decrease in the AA coefficient of the resistivity T2T^2-term and a change in the structure of the angular magnetoresistance oscillations (AMRO) for BB rotating in the planes, confirms the reconstruction of the Fermi surface (FS). Our observations and LDA calculations indicate a strong dependence of the FS on the Ca concentration and suggest the coexistence of itinerant and localized electronic states in single layered ruthenates.Comment: 5 pages, 4 fig

    Prospects for Growing Extra-short-duration Pigeonpea in Rotation with Winter Crops Proceedings of the Workshop and Monitoring Tour 16-18 Oct 1995

    Get PDF
    Short-durat ion pigeonpea varieties have helped establish a new pigeonpea-wheat cropping system in the northwestern plains of India. However, because wheat sowing is of ten delayed in this rotat ion, extra-short-duration genotypes that will mature 10-15 days earlier than short-duration ones are being developed. To consider the prospects for their adoption, the Indian Agricultural Research Institute and the International Crops Research Institute for the Semi-Arid Tropics joint ly hosted a workshop in New Delhi, India. Participants from Bangladesh, India, Nepal, Pakistan, and SriLanka reviewed the status of pigeonpea in cropping systems of the region and discussed four broad areas in relation to extra-short-duration pigeonpea: improving plant type; improving management; extension and demonstrations; and cropping systems, seed production, and socioeconomic issues. The workshop was followed by a monitoring tour of on-farm trials of the new genotypes (mainly ICPL 85010) in nearby districts of Uttar Pradesh and Haryana

    Observation of magnetization reversal and negative magnetization in a double perovskite compound Sr2YbRuO6

    Full text link
    Detailed magnetic properties of the compound Sr2YbRuO6 are presented here. The compound belongs to the family of double perovskites forming a monoclinic structure. Magnetization meas-urements reveal clear evidence for two components of magnetic ordering aligned opposite to each other, leading to a magnetization reversal, compensation temperature (T* = 34 K) and neg-ative magnetization at low temperatures and low magnetic fields. Heat capacity measurements corroborate the presence of two components in the magnetic ordering and a noticeable third anomaly at low temperatures (~15 K) which cannot be attributed the Schottky effect. The calcu-lated magnetic entropy is substantially lower than that expected for the ground states of the or-dered moments of Ru5+ and Yb3+, indicating the presence of large crystal field effects and/ or in-complete magnetic ordering and/or magnetic frustrations well above the magnetic ordering. An attempt is made to explain the magnetization reversal within the frameworks of available models.Comment: 15 pages text, 6 figures Journal-ref: J.Phys.:Condens.Matter 20(2008)23520

    Role of Dicer Enzyme in the Regulation of Store Operated Calcium Entry (SOCE) in CD4+ T Cells

    Get PDF
    Background/Aims: Activation of T cell receptors (TCRs) in CD4+ T cells leads to a cascade of signalling reactions including increase of intracellular calcium (Ca2+) levels with subsequent Ca2+ dependent stimulation of gene expression, proliferation, cell motility and cytokine release. The increase of cytosolic Ca2+ results from intracellular Ca2+ release with subsequent activation of store-operated Ca2+ entry (SOCE). Previous studies suggested miRNAs are required for the development and functions of CD4+ T cells. An enzyme called Dicer is required during the process of manufacturing mature miRNAs from the precursor miRNAs. In this study, we explored whether loss of Dicer in CD4+ T cells affects SOCE and thus Ca2+ dependent regulation of cellular functions. Methods: We tested the expression of Orai1 by q-RT-PCR and flow cytometry. Further, we measured SOCE by an inverted phase-contrast microscope with the Incident-light fluorescence illumination system using Fura-2. Intracellular Ca2+ was also measured by flow cytometry using Ca2+ sensitive dye Fluo-4. Results: We found that in Dicer deficient (DicerΔ/Δ) mice Orai1 was downregulated at mRNA and protein level in CD4+ T cells. Further, SOCE was significantly smaller in DicerΔ/Δ CD4+ T cells than in CD4+ T cells isolated from wild-type (Dicerfl/fl) mice. Conclusion: Our data suggest that miRNAs are required for adequate Ca2+ entry into CD4+ T cells and thus triggering of Ca2+ sensitive immune functions

    Superconductivity and Electronic Structure of Perovskite MgCNi3

    Full text link
    The electronic structure, stability, electron phonon coupling and superconductivity of the non-oxide perovskite MgCNi3_3 are studied using density functional calculations. The band structure is dominated by a Ni dd derived density of states peak just below the Fermi energy, which leads to a moderate Stoner enhancement, placing MgCNi3_3 in the range where spin fluctuations may noticeably affect transport, specific heat and superconductivity, providing a mechanism for reconciling various measures of the coupling λ\lambda. Strong electron phonon interactions are found for the octahedral rotation mode and may exist for other bond angle bending modes. The Fermi surface contains nearly cancelling hole and electron sheets that give unusual behavior of transport quantities particularly the thermopower. The results are discussed in relation to the superconductivity of MgCNi3_3.Comment: 4 pages, RevTex, 5 ps figure

    Pre-mRNA Splicing Modulation by Antisense Oligonucleotides

    Get PDF
    Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells
    corecore