78,654 research outputs found
Right-handed Majorana Neutrino Mass Matrices for Generating Bimaximal Mixings in Degenerate and Inverted Models of Neutrinos
An attempt is made to generate the bimaximal mixings of the three species of
neutrinos from the textures of the right-handed Majorana neutrino mass
matrices. We extend our earlier work in this paper for the generation of the
nearly degenerate as well as the inverted hierarchical models of the
left-handed Majorana neutrino mass matrices using the non-diagonal textures of
the right-handed Majorana neutrino mass matrices and the diagonal form of the
Dirac neutrino mass matrices, within the frame work of the seesaw mechanism in
a model independent way. Such Majorana neutrino mass models are important to
explain the recently reported result on the neutrinoless double beat decay
(0/nu/beta/beta) experiment,together with the earlier established data on LMA
MSW solar and atmospheric neutrino oscillations.Comment: 14 pages, To appear in IJMPA (2003
VLT observations of the asymmetric Etched Hourglass Nebula, MyCn 18
Context. The mechanisms that form extreme bipolar planetary nebulae remain
unclear. Aims. The physical properties, structure, and dynamics of the bipolar
planetary nebula, MyCn 18, are investigated in detail with the aim of
understanding the shaping mechanism and evolutionary history of this object.
Methods. VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical
Echelle spectra are used to investigate MyCn 18. Morpho-kinematic modelling was
used to firmly constrain the structure and kinematics of the source. A
timescale analysis was used to determine the kinematical age of the nebula and
its main components. Results. A spectroscopic study of MyCn 18's central and
offset region reveals the detailed make-up of its nebular composition.
Molecular hydrogen, atomic helium, and Bracket gamma emission are detected from
the central regions of MyCn 18. ISAAC spectra from a slit position along the
narrow waist of the nebula demonstrate that the ionised gas resides closer to
the centre of the nebula than the molecular emission. A kinematical age of the
nebula and its components were obtained by the P-V arrays and timescale
analysis. Conclusions. The structure and kinematics of MyCn 18 are better
understood using an interactive 3-D modelling tool called shape. A dimensional
and timescale analysis of MyCn 18's major components provides a possible
mechanism for the nebula's asymmetry. The putative central star is somewhat
offset from the geometric centre of the nebula, which is thought to be the
result of a binary system. We speculate that the engulfing and destruction of
an exoplanet during the AGB phase may have been a key event in shaping MyCn 18
and generating of its hypersonic knotty outflow.Comment: 15 pages, 3 tables, 13 figures. Accepted for publication by A&
Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride
Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments
Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers
We discuss the magnetic phases of the Hubbard model for the honeycomb lattice
both in two and three spatial dimensions. A ground state phase diagram is
obtained depending on the interaction strength
U and electronic density n. We find a first order phase transition between
ferromagnetic regions where the spin is maximally polarized (Nagaoka
ferromagnetism) and regions with smaller magnetization (weak ferromagnetism).
When taking into account the possibility of spiral states, we find that the
lowest critical U is obtained for an ordering momentum different from zero. The
evolution of the ordering momentum with doping is discussed. The magnetic
excitations (spin waves) in the antiferromagnetic insulating phase are
calculated from the random-phase-approximation for the spin susceptibility. We
also compute the spin fluctuation correction to the mean field magnetization by
virtual emission/absorpion of spin waves. In the large limit, the
renormalized magnetization agrees qualitatively with the Holstein-Primakoff
theory of the Heisenberg antiferromagnet, although the latter approach produces
a larger renormalization
- …