189 research outputs found

    Analysis of the Maternity Benefits Amendment Act, 2017 and its Implications on the Modern Industrial Discourse

    Get PDF
    As a recognition of the crucial role played by women, it is vital that governments move away from and rocentric laws and work towards achieving social justice, both in the organized and unorganized sectors. The concept of social justice has manifested itself in the Maternity Benefits Act, 1961 and its subsequent amendments. Complementary to this law, the judiciary has played a vital role in rendering judgments that involve liberal interpretations of the provisions of the law so as to be beneficial to the labor community. This is evidenced in the case of B. Shah v. Labor Court, Coimbatore. However, lacunas and complications continue to exist. The Legislature and the Judiciary must identify the factors that are obstructing the achievement of social and economic equality of women. This paper seeks to analyze judicial interpretations and the legislative intent of the 2017 amendment to the Maternity Benefits Act, 1961

    Real Time Non uniformity Correction Algorithm and Implementation in Reconfigurable Architecture for Infra red Imaging Systems

    Get PDF
     In modern electro-optical systems, infra-red (IR) imaging system is an essential sensor used for day and night surveillance. In recent years, advancements in IR sensor technology resulted the detectors having smaller pitch, better thermal sensitivity with large format like 640.512, 1024.768 and 1280.1024. Large format IR detectors enables realisation of high resolution compact thermal imager having wide field-of view coverage. However, the performance of these infrared imaging systems gets limited by non uniformity produced by sensing element, which is temporal in nature and present in spatial domain. This non uniformity results the fixed pattern noise, which arises due to variation in gain and offset components of the each pixel of the sensor even when exposed to a uniform scene. This fixed pattern noise limits the temperature resolution capability of the IR imaging system thereby causing the degradation in system performance. Therefore, it is necessary to correct the non-uniformities in real time. In this paper, non uniformity correction algorithm and its implementation in reconfigurable architectures have been presented and results on real time data have been described

    Structure, microstructure and magnetic properties of electrodeposited Co and Co-Pt in different nanoscale geometries: Structure, microstructure and magnetic properties of electrodeposited Co and Co-Pt in different nanoscale geometries

    Get PDF
    Thin films and nanowires of Co-Pt have been prepared by means of electrodeposition. Composition, structure, microstructure and magnetic properties have been intensively studied using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry and correlated to the deposition parameters such as electrolyte composition, deposition current and/or potential. Co rich Co-Pt films have been deposited at various current densities. A nearly constant composition of Co70Pt30 was achieved for current densities between 18 and 32 mA/cm². Detailed texture measurements confirmed an increasing fraction of the hexagonal phase with its c-axis aligned perpendicular to the film plane with increasing current density. Accordingly, magnetic properties are strongly affected by the magnetocrystalline anisotropy of the hexagonal phase that competes with the shape anisotropy of the thin film geometry. Co-Pt nanowires have been prepared within alumina templates at different deposition potentials between -0.6 and -0.9VSCE changing the composition from nearly pure Pt to Co. The composition Co80Pt20 was observed at a deposition potential of -0.7VSCE. Co-Pt nanowires are nanocrystalline in the as-deposited state. Magnetic measurements reveal changing fcc and hcp phase fractions within the wires as the effective anisotropy significantly differs from the expected shape anisotropy for nanowires with high aspect ratio. This change in effective anisotropy is attributed to the preferential alignment of the c-axis of hcp Co-Pt phase perpendicular to the nanowires axis. A promising alternative with much smaller feature sizes is the diblock copolymer template. Electrodeposition of Co and Co-Pt into these templates has been carried out. Inhomogeneities in the template thickness as well as a certain substrate roughness have been identified to be the reasons for inhomogeneous template filling. Thus magnetic properties are dominated by large deposits found on top of the template. Additionally, rolled-up tubes of several nm thick Au/Co/Au films have been characterized magnetically. Temperature dependent measurements show an exchange bias behaviour that is explained in terms of induced stresses during cooling. Changes of magnetic properties in the investigated samples are finally discussed in terms of competing effects of different magnetic anisotropies in various geometries.Co-Pt Dünnschichten und Nanodrähte wurden mittels elektrochemischer Abscheidung hergestellt. Zusammensetzung, Struktur, Mikrostruktur und magnetische Eigenschaften wurden intensiv mit Röntgenbeugung, Rasterelektronenmikroskopie und Magnetometrie untersucht und mit den Depositionsparametern wie Elektrolytzusammensetzung, Abscheidestrom und/oder-potential korreliert. Co reiche Co-Pt-Filme wurden mit verschiedenen Stromdichten hergestellt. Eine nahezu konstante Zusammensetzung im Bereich Co70Pt30 wurde für Stromdichten zwischen 18 und 32 mA/cm² erreicht. Detaillierte Texturmessungen bestätigen einen zunehmenden Anteil an hexagonaler Phase mit senkrecht zur Filmebene ausgerichteter c-Achse mit zunehmender Stromdichte. Dementsprechend werden die magnetischen Eigenschaften stark von der magnetokristallinen Anisotropie der hexagonalen Phase beeinflusst, die mit der Formanisotropie der Dünnschicht-Geometrie konkurriert. Co-Pt-Nanodrähte wurden in nanoporöse Aluminiumoxidmembranen bei verschiedenen Potentialen zwischen -0,6 und -0.9 VSCE abgeschieden, wobei sich die Zusammensetzung von nahezu reinem Pt zu Co verändert. Die Zusammensetzung Co80Pt20 wurde bei einem Abscheidepotential von -0.7 VSCE erhalten. Die so hergestellten Co-Pt Nanodrähte sind nanokistallin. Magnetische Messungen weisen jedoch auf veränderte Phasenanteile der fcc und hcp Phase innerhalb der Drähte hin, da die effektive Anisotropie erheblich von der für Nanodrähte mit hohem Aspektverhältnis erwarteten Formanisotropie abweicht. Diese Änderung der effektiven Anisotropie ist auf die bevorzugte Ausrichtung der hexagonalen c-Achse des Co-Pt senkrecht zur Drahtachse zurückzuführen. Vielversprechende Template mit deutlich kleineren Dimensionen sind Diblockcopolymertemplate. Es wurden Versuche zur Abscheidung von Co und Co-Pt in diese Template durchgeführt. Als Gründe für die inhomogene Templatfüllung wurden Inhomogenitäten in der Schichtdicke sowie eine gewisse Rauhigkeit der Substrate identifiziert. Aufgrund der ungleichmäßigen Fülleg werden die magnetischen Eigenschaften durch große, halbkugelförmige Abscheidunge auf der Oberfläche des Templates bestimmt. Darüber hinaus wurden aus wenige nm dicken Au/Co/Au Filmen hergestellte Mikroröhren magnetisch charakterisiert. Temperaturabhängige Messungen zeigen ein Exchange Bias Verhalten, das durch beim Abkühlen induzierte Spannungen erklärt wird. Unterschiede im magnetischen Verhalten der untersuchten Proben werden abschließend im Hinblick auf die verschiedenen konkurrierenden magnetischen Anisotropien in verschiedenen Geometrien diskutiert

    Range Performance Modelling of Thermal Imaging System based on Single Parameter Characterised by Ambient Temperature and Relative Humidity

    Get PDF
    Range performance of a thermal imaging system is characterised by the prevailing atmospheric condition present at that time. There are two dominant parameters that limit the range performance of any thermal imaging systems i.e. ambient temperature and relative humidity. In the present work, comparative study of acquisition range performance of thermal imaging system operating in LWIR and MWIR spectral bands has been presented as a function of absolute humidity (AH) which is responsible for attenuation of IR radiation due to water vapour molecules present in path length. Presentation of acquisition range as function of AH leads to a single range performance table/graph for thermal imaging system under consideration for predefined visibility (V), target size, ambient temperature (T), target to background temperature difference (ΔT) and relative humidity (RH). This table/graph can be used to predict detection, recognition and identification ranges for any set of combination of air temperature (T) and relative humidity (RH). The approach presented in this paper is versatile and has been illustrated through comparative performance analysis of LWIR and MWIR thermal imaging systems based on 640X512 staring focal plane array (FPA) having identical design parameters in terms of resolution (IFOV). It has been shown that MWIR performance is superior to LWIR beyond a crossover value of AH(T) even though MRTD of MWIR sensor is inferior to that of LWIR sensor at all spatial frequencies. Study has been carried out both for clear atmosphere and hazy conditions

    Performance Improvement of Electro Optic Search and Track System for Maritime Surveillance

    Get PDF
    Surveillance of maritime domain is absolutely vital to ensure an appropriate response against any adverse situation relating to maritime safety or security. Electro-optic search and track (EOST) system plays a vital role by providing independent search and track of potential targets in marine environment. EOST provides real-time images of objects with details, required to neutralise threats. At long range, detection and tracking capability of EOST degrades due to uncertainty in target signatures under cluttered scenario. Image quality can be improved by using suitable sensors and enhancement using the target/background signature knowledge. Robust tracking of object can be achieved by optimising the performance parameters of tracker. In the present work, improvement in the performance of EOST subsystems such as sensor, video processor and video tracker are discussed. To improve EOST performance in terms of detection and tracking, sensor selection criterion and various real time image processing techniques and their selection criteria for maritime applications have been also discussed. Resultant improvement in the quality of image recorded under marine environment has been presented

    A new human embryonic cell type associated with activity of young transposable elements allows definition of the inner cell mass

    Get PDF
    AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to4:There remains much that we do not understand about the earPlileesatsesvtaergiefysthoaftahlulemntarniedsaerveecloorpr-ect: ment. On a gross level, there is evidence for apoptosis, but the nature of the affected cell types is unknown. Perhaps most importantly, the inner cell mass (ICM), from which the foetus is derived and hence of interest in reproductive health and regenerative medicine, has proven hard to define. Here, we provide a multi-method analysis of the early human embryo to resolve these issues. Single-cell analysis (on multiple independent datasets), supported by embryo visualisation, uncovers a common previously uncharacterised class of cells lacking commitment markers that segregates after embryonic gene activation (EGA) and shortly after undergo apoptosis. The discovery of this cell type allows us to clearly define their viable ontogenetic sisters, these being the cells of the ICM. While ICM is characterised by the activity of an Old non-transposing endogenous retrovirus (HERVH) that acts to suppress Young transposable elements, the new cell type, by contrast, expresses transpositionally competent Young elements and DNA-damage response genes. As the Young elements are RetroElements and the cells are excluded from the developmental process, we dub these REject cells. With these and ICM being characterised by differential mobile element activities, the human embryo may be a “selection arena” in which one group of cells selectively die, while other less damaged cells persist.European Research Council, ERC Advanced [ERC-2011-ADG 294742European Research Council, ERC Advanced [ERC-2014-ADG 669207]CICE-FEDER-P12-CTS-2256Plan Nacional de I+D+I 2008-20112013-2016 (FIS-FEDER-PI14/02152)PCIN-2014-115-ERANET NEURON IIthe European Research Council (ERC-Consolidator ERC-STG-2012-309433)The Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund (ISFF2)Ms Francisca Serran

    Auto-video Tracking System: Performance Evaluation

    Get PDF
    Automatic target tracking systems are employed in a wide variety of missions and tracking environment such as fire control, guidance, navigation, passive range estimation, and automatic target discrimination. The tracker performance depends upon target size, contrast,  speed, and signal-to-noise ratio. The evaluation of a tracker system involves lengthy field trials and measurements. In the present article, a method for quick evaluation of tracker system and working out selection criteria for different tracking algorithm for various target and background combinations have been suggested. Performance measures such as aiming point error, durationof successful tracking, number of tracking losses, indication of confidence, and system reaction time have been used to evaluate the performance of a tracking system.Defence Science Journal, 2008, 58(4), pp.565-572, DOI:http://dx.doi.org/10.14429/dsj.58.167

    A Modified Source Impact Ionisation MOSFET (MS I-MOS) for Low Power and Fast Switching Digital Applications

    Get PDF
    This paper presents a two-dimensional (2D) modified source n-p-n impact ionisation MOSFET, called MS IMOS, to suppress the short channel effects and increase the oncurrent (ION) to off-current (IOFF) ratio. The proposed device is an n-p-n I-MOS on silicon on insulator (SOI), upon which a source engineering is performed. The proposed device inherits the characteristics of bipolar I-MOS, with the advantage of reduced floating body effect and the increased ION to IOFF ratio, it exhibits a lower operating voltage than that of earlier I-MOS structures. The reliability issues related to hot carrier injection in the gate oxide has also been addressed effectively in the proposed structure due to lower operating voltage
    • …
    corecore