196 research outputs found
Functional Organization of the Gustatory System in the Brains of Ictalurid Catfish: a Combined Electrophysiological and Neuroanatomical Study (Taste, Viscerotopic, Sensory Maps, Forebrain).
The present study utilizes electrophysiological and neuroanatomical techniques to investigate the functional organization of the gustatory system in the brainstem and the forebrain of the channel catfish, Ictalurus punctatus. Neuroanatomical studies indicate an overlapping, segmental pattern of projection of glossopharyngeal-vagal branches in the vagal lobe. The vagal nerve complex is divisible into an interoceptive input (consisting of general visceral fibers) from abdominal viscera and an exteroceptive-branchial component (consisting of special and general visceral fibers) innervating the oro-pharyngeal region. The interoceptive-visceral input converges onto the exteroceptive, oro-pharyngeal input in the nucleus intermedius of the vagal lobe (nIV). In addition, extra-oral and oral gustatory information converges onto the nucleus intermedius of the facial lobe (nIF) and sensory inputs from separate regions of the oropharynx converge onto separate halves of the dorsal cap of the vagal lobe. Overlapping taste and tactile sensory maps of the oropharynx are present in the vagal lobe of the catfish. The representation of the oropharynx is less well defined than the somatotopic map in the facial lobe except for the bilaterally mapped extra-oral surface. Gustatory information reaches the area dorsalis pars medialis of the telencephalon and several nuclei in the ventral diencephalon of the catfish. The central gustatory pathway ascends from the medulla to the level of the diencephalon via the secondary gustatory nucleus as well as to the telencephalon via small neurons in the diencephalic lobo-bulbar nucleus. Neurons in the gustatory region of the telencephalon descend to the diencephalic level primarily via the medial forebrain bundle
Recommended from our members
Recent Trends in Imaging for Atrial Fibrillation Ablation
Catheter ablation provides an important treatment option for patients with both paroxysmal and persistent atrial fibrillation. It mainly involves pulmonary vein isolation and additional ablations in the left atrium in persistent cases. There have been significant advancements in this procedure to enhance the safety and effectiveness. One of them is the evolution of various imaging modalities to facilitate better visualization of the complex left atrial anatomy and the pulmonary veins in order to deliver the lesions accurately. In this article, we review the electroanatomic mapping systems including the magnetic-based and impedence-based systems. Each of these mapping systems has its own advantages and disadvantages. In addition, we also discuss the role of intracardiac echocardiography and three dimensional rotational angiography in atrial fibrillation ablation
An Approach for Segmentation of Colored Images with Seeded Spatial Enhancement
In the image analysis, image segmentation is the operation that divides image into set of different segments. The work deals about common color image segmentation techniques and methods. Image enhancement is done using four connected approach for seed selection of the image. An algorithm is implemented on the basis of manual seed selection. It select a seed point in an image an then check for its four neighbor pixels connected to that particular seed point. And segment that image in foreground and background framing. At the end, the evaluation criterion will be introduced and applied on the algorithms results. Five most used image segmentation algorithms, namely, efficient graph based, K means, Mean shift, Expectation maximization and hybrid method are compared with implemented algorithm
POST-PULWAMA INDO-PAK CONFLICT: RECONNOITERING THE ROLE OF SHANGHAI COOPERATION ORGANIZATION
Terrorism has emerged as one of the major challenges for the Eurasian regional peace, security, and cooperation. Keeping these challenges in perspective, the Shanghai Cooperation Organization (SCO) was established to eliminate the menace of terrorism, fundamentalism, and secessionism. Against this background, the main objectives of this paper are to examine how terrorism emerged as a major determining factor in the Indo-Pak relations and how the Shanghai Cooperation Organization (SCO), was failed to play its effective role in the Indo-Pak conflict given the Pulwama terror attack. For this research, descriptive and analytical methods were used and the data was collected from secondary sources. The major findings of this article are that terrorism has emerged as one of the major determinants of Indo-Pak relations and the same has become a major challenge for the SCO to resolve the issue. Against the background of terror attacks, it was anticipated that the SCO would play a crucial role to pacify the situation. However, the role played by the SCO in this situation proved marked as a Whack-a-Mole. 
Stochastic motion of a charged particle in a magnetic field: I. Classical treatment
We study the dissipative, classical dynamics of a charged particle in the presence of a magnetic field. Two stochastic models are employed, and a comparative analysis is made, one based on diffusion processes and the other on jump processes. In the literature on collision-broadening of spectral lines, these processes go under the epithet of weak-collision model and Boltzmann-Lorentz model, respectively. We apply our model calculation to investigate the effect of magnetic field on the collision-broadened spectral lines, when the emitter carries an electrical charge. The spectral lines show narrowing as the magnetic field is increased, the narrowing being sharper in the Boltzmann-Lorentz model than in the weak collision model
Key characteristic coupling and resolving key characteristic conflict
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.Includes bibliographical references (p. 159-166).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Real complex assemblies have to deliver large number of customer requirements. Assemblies in general have many parts which work together to deliver those requirements. The involvement of many parts and presence of many requirements to be delivered, results in the involvement of a part in the delivery chains of more than one requirement. As a result most of the requirements are not delivered independently. Coupling among the requirements makes it hard to achieve all the requirements with in their respective tolerance limits. The thesis gives classification of nature of relationships that can exist among various requirements. It discusses characteristic of each relationship and how it can affect the robustness of an assembly. When the requirements in the assembly are conflicting, i.e. reduction in variation in one of the requirements increases variation in conflicting requirement, it tends to become non-robust. Non-robust assemblies entail high manufacturing costs. Aim of the thesis is to identify the scenarios of conflict in the assembly. Screw theory can be used to find the presence of coupling among requirements in the assembly. It can also be used to identify the nature of coupling. If coupling suggests that requirements are coupled, we analyze the intensity of the conflict. Not all conflicts need to be solved. Only the conflicts that will make assembly miss tolerance limits on its requirements need to be solved. The thesis outlines some of the methods that can be used to either resolve conflict or reduce the amount of conflict in the assembly. Conflicts can be removed from the assembly by making suitable changes in design. Design changes will modify DFCs of the conflicting requirements. Use of appropriate assembly techniques can also remove conflicts from the assembly. An assembly without any conflicts is more robust and can be produced at a less cost as compared to the one having conflicts.by Jagmeet Singh.S.M
Salinity induced physiological and biochemical changes in chickpea (Cicer arietinum L.) genotypes
Plant growth and development are adversely affected by salinity- a major environmental stress that limits agricultural production. Chickpea (Cicer arietinum L.) is sensitive to salinity that affects its yield and there is need to identify the tolerant genotypes. The present study was conducted to evaluate the effect of salinity on chickpea genotypes with specific physiological and biochemical attributes contributing to their adaptability to salinity stress. Seven chickpea genotypes both desi (ICC8950, ICCV10, ICC15868, GL26054) and kabuli (BG1053, L550, L552) were evaluated for salinity tolerance. Maximum decrease in relative leaf water content and chlorophyll content was observed with ICC15868 and GL26054 among the desi and L552 from the kabuli genotypes. The photosynthetic pigments, activity of nitrate reductase and relative leaf water content was also reduced in response to salt application with effect being more pronounced in ICC15868, GL26054 and L552 as compared to ICC8950, ICCV10, BG1053 and L550. Lipid peroxidation increases with the increase in NaCl concentration, maximum increment was observed in genotypes ICC15868, GL26054 and L552. Accumulation of proline in response to environmental stresses seems to be widespread among plants. Higher protein fractions were observed with tolerant genotypes in contrast to sensitive genotypes. Salt imposed stress finally caused a higher decline in number of filled pods. On the basis of physiological and biochemical parameters genotypes ICC8950 and ICCV10 from the desi genotypes and BG1053 and L550 from kabuli were identified as the tolerant while ICC15868, GL26054 as the sensitive ones and L552 as the moderately tolerant genotypes. These genotypes could be used as a source of tolerance in breeding programme to develop salt tolerant genotypes
Comparative analysis of robust design methods
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 161-163).Robust parameter design is an engineering methodology intended as a cost effective approach to improve the quality of products, processes and systems. Control factors are those system parameters that can be easily controlled and manipulated. Noise factors are those system parameters that are difficult and/or costly to control and are presumed uncontrollable. Robust parameter design involves choosing optimal levels of the controllable factors in order to obtain a target or optimal response with minimal variation. Noise factors bring variability into the system, thus affecting the response. The aim is to properly choose the levels of control factors so that the process is robust or insensitive to the variation caused by noise factors. Robust parameter design methods are used to make systems more reliable and robust to incoming variations in environmental effects, manufacturing processes and customer usage patterns. However, robust design can become expensive, time consuming, and/or resource intensive. Thus research that makes robust design less resource intensive and requires less number of experimental runs is of great value. Robust design methodology can be expressed as multi-response optimization problem.(cont.) The objective functions of the problem being: maximizing reliability and robustness of systems, minimizing the information and/or resources required for robust design methodology, and minimizing the number of experimental runs needed. This thesis discusses various noise factor strategies which aim to reduce number of experimental runs needed to improve quality of system. Compound Noise and Take-The-Best-Few Noise Factors Strategy are such noise factor strategies which reduce experimental effort needed to improve reliability of systems. Compound Noise is made by combing all the different noise factors together, irrespective of the number of noise factors. But such a noise strategy works only for the systems which show effect sparsity. To apply the Take-The-Best-Few Noise Factors Strategy most important noise factors in system's noise factor space are found. Noise factors having significant impact on system response variation are considered important. Once the important noise factors are identified, they are kept independent in the noise factor array. By selecting the few most important noise factors for a given system, run size of experiment is minimized.(cont.) Take-The-Best-Few Noise Factors Strategy is very effective for all kinds of systems irrespective of their effect sparsity. Generally Take-The-Best-Few Noise Factors Strategy achieves nearly 80% of the possible improvement for all systems. This thesis also tries to find the influence of correlation and variance of induced noise on quality of system. For systems that do not contain any significant three-factor interactions correlation among noise factors can be neglected. Hence amount of information needed to improve the quality of systems is reduced.by Jagmeet Singh.Ph.D
- …