22 research outputs found

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Full text link
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Get PDF
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches

    Paired Expression Analysis of Tumor Cell Surface Antigens

    No full text
    Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs) is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19) or antibody-based therapy (anti-CD20) in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance) for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues). We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK) with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK1, GPR173, or with one another provided the most promising paired-hits. We propose that targeting these markers together would increase the specificity and thereby the safety of CAR-based therapy for neuroblastoma

    Clonal Evolution and Heterogeneity of Osimertinib Acquired Resistance Mechanisms in EGFR Mutant Lung Cancer

    Get PDF
    Clonal evolution of osimertinib-resistance mechanisms in EGFR mutant lung adenocarcinoma is poorly understood. Using multi-region whole-exome and RNA sequencing of prospectively collected pre- and post-osimertinib-resistant tumors, including at rapid autopsies, we identify a likely mechanism driving osimertinib resistance in all patients analyzed. The majority of patients acquire two or more resistance mechanisms either concurrently or in temporal sequence. Focal copy-number amplifications occur subclonally and are spatially and temporally separated from common resistance mutations such as EGFR C797S. MET amplification occurs in 66% (n = 6/9) of first-line osimertinib-treated patients, albeit spatially heterogeneous, often co-occurs with additional acquired focal copy-number amplifications and is associated with early progression. Noteworthy osimertinib-resistance mechanisms discovered include neuroendocrine differentiation without histologic transformation, PD-L1, KRAS amplification, and ESR1-AKAP12, MKRN1-BRAF fusions. The subclonal co-occurrence of acquired genomic alterations upon osimertinib resistance will likely require targeting multiple resistance mechanisms by combination therapies

    PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability

    Get PDF
    Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and adolescent young adults, driven primarily by the chimeric transcription factor PAX3-FOXO1. The mechanisms by which PAX3-FOXO1 dysregulates chromatin are unknown. We find PAX3-FOXO1 reprograms the cis-regulatory landscape by inducing de novo super enhancers. PAX3-FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3-FOXO1-occupied super enhancers. Furthermore, PAX3-FOXO1 recruits and requires the BET bromodomain protein BRD4 to function at super enhancers, resulting in a complete dependence on BRD4 and a significant susceptibility to BRD inhibition. These results yield insights into the epigenetic functions of PAX3-FOXO1 and reveal a specific vulnerability that can be exploited for precision therapy.Significance: PAX3-FOXO1 drives pediatric fusion-positive rhabdomyosarcoma, and its chromatin-level functions are critical to understanding its oncogenic activity. We find that PAX3-FOXO1 establishes a myoblastic super enhancer landscape and creates a profound subtype-unique dependence on BET bromodomains, the inhibition of which ablates PAX3-FOXO1 function, providing a mechanistic rationale for exploring BET inhibitors for patients bearing PAX-fusion rhabdomyosarcoma
    corecore