6 research outputs found

    Epigenetically inactivated RASSF1A as a tumor biomarker

    Get PDF
    RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established is included in several diagnostic panels, its diagnostic utility is still experimental

    Methylation pattern of caveolin-1 in prostate cancer as potential cfDNA biomarker

    Get PDF
    High prevalence and mortality of prostate cancer (PCa) are well known global health issues. Novel biomarkers for better identifying patients with PCa are the subject of extensive research. Prostate specific antigen (PSA) shows low specificity in screening and diagnostics, leading to unnecessary biopsies and health costs. Eighty patients with PCa and benign prostate hyperplasia (BPH) were included in the study. We analyzed CAV1 gene expression and methylation in tissue. CAV1 cfDNA methylation from blood and seminal plasma was accessed as a potential PCa biomarker. Although methylation in blood plasma did not differ between PCa and BPH patients, methylation in seminal plasma showed better PCa biomarker performances than tPSA (AUC 0.63 vs. AUC 0.52). Discrimination of BPH and Gleason grade group 1 PCa patients from patients with higher Gleason grade groups revealed very good performance as well (AUC 0.72). CAV1 methylation is useful biomarker with potential for further seminal plasma cfDNA research, but its diagnostic accuracy should be improved, as well as general knowledge about cfDNA in seminal plasma

    Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source

    No full text
    Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC

    In Search of TGCT Biomarkers: A Comprehensive In Silico and Histopathological Analysis

    No full text
    Testicular germ cell tumors (TGCTs) are ever more affecting the young male population. Germ cell neoplasia in situ (GCNIS) is the origin of TGCTs, namely, seminomas (SE) and a heterogeneous group of nonseminomas (NS) comprising embryonal carcinoma, teratoma, yolk sac tumor, and choriocarcinoma. Response to the treatment and prognosis, especially of NS, depend on precise diagnosis with a necessity for discovery of new biomarkers. We aimed to perform comprehensive in silico analysis at the DNA, RNA, and protein levels of six prospective (HOXA9, MGMT, CFC1, PRSS21, RASSF1A, and MAGEC2) and six known TGCT biomarkers (OCT4, SOX17, SOX2, SALL4, NANOG, and KIT) and assess its congruence with histopathological analysis in all forms of TGCTs. Cancer Hallmarks Analytics Tool, the Search Tool for the Retrieval of Interacting Genes/Proteins database, and UALCAN, an interactive web resource for analyzing cancer OMICS data, were used. In 108 TGCT and 48 tumor-free testicular samples, the immunoreactivity score (IRS) was calculated. SE showed higher frequency in DNA alteration, while DNA methylation was significantly higher for all prospective biomarkers in NS. In GCNIS, we assessed the clinical positivity of RASSF1 and PRSS21 in 52% and 62% of samples, respectively, in contrast to low or nil positivity in healthy seminiferous tubules, TGTCs as a group, SE, NS, or all NS components. Although present in approximately 80% of healthy seminiferous tubules (HT) and GCNIS, HOXA9 was diagnostically positive in 64% of TGCTs, while it was positive in 82% of NS versus 29% of SE. Results at the DNA, mRNA, and protein levels on putative and already known biomarkers were included in the suggested panels that may prove to be important for better diagnostics of various forms of TGCTs

    Testicular Germ Cell Tumor Tissue Biomarker Analysis: A Comparison of Human Protein Atlas and Individual Testicular Germ Cell Tumor Component Immunohistochemistry

    No full text
    The accurate management of testicular germ cell tumors (TGCTs) depends on identifying the individual histological tumor components. Currently available data on protein expression in TGCTs are limited. The human protein atlas (HPA) is a comprehensive resource presenting the expression and localization of proteins across tissue types and diseases. In this study, we have compared the data from the HPA with our in-house immunohistochemistry on core TGCT diagnostic genes to test reliability and potential biomarker genes. We have compared the protein expression of 15 genes in TGCT patients and non-neoplastic testicles with the data from the HPA. Protein expression was converted into diagnostic positivity. Our study discovered discrepancies in three of the six core TGCT diagnostic genes, POU5F1, KIT and SOX17 in HPA. DPPA3, CALCA and TDGF1 were presented as potential novel TGCT biomarkers. MGMT was confirmed while RASSF1 and PRSS21 were identified as biomarkers of healthy testicular tissue. Finally, SALL4, SOX17, RASSF1 and PRSS21 dysregulation in the surrounding testicular tissue with complete preserved spermatogenesis of TGCT patients was detected, a potential early sign of neoplastic transformation. We highlight the importance of a multidisciplinary collaborative approach to fully understand the protein landscape of human testis and its pathologies
    corecore