2 research outputs found

    Testing potential groundwater reservoir connectivity using isotopes in the south-central Karoo region

    Get PDF
    Documenting areas with natural groundwater reservior connectivity using isotopes before the anticipated shale gas development in the Karoo Basin of South Africa could contribute to developing legislative framework for hydraulic fracturing. In this study, groundwater dynamics (primarily connectivity between old/deep and low temperature modern/shallow (74 pMC). This implies that adjusting the 14C content in Dissolved Inorganic Carbon (DIC) based on its dilution by 14C free carbonates is influential in controlling the mixed groundwater ages, and that relatively older groundwater occurs at shallow depths in other parts of the study area possibly due to linked fault systems between deep and shallow aquifers. δ18O-δ2H relationships for the sampled groundwater suggest that groundwater samples collected within the main drainage of the Great Fish River plot close to the Global Meteoric Water Line (GMWL) indicating that the recharge water to this groundwater does not experience significant evaporation. The average isotope composition of the recharging water for the all of the sampled groundwater is -7.90 ‰ and -46.72 ‰ for δ18O and δ2H, respectively. This result plots halfway between rainwater 18O-2H relationship lines for the Indian Ocean and the Atlantic Ocean. This suggests that the rainwater from which the sampled groundwater was derived from evolved from both the Indian and Atlantic Ocean waters

    Earth Stewardship Science—Transdisciplinary Contributions to Quantifying Natural and Cultural Heritage of Southernmost Africa

    No full text
    Evaluating anthropogenic changes to natural systems demand greater quantification through innovative transdisciplinary research focused on adaptation and mitigation across a wide range of thematic sciences. Southernmost Africa is a unique field laboratory to conduct such research linked to earth stewardship, with ‘earth’ as in our Commons. One main focus of the AEON’s Earth Stewardship Science Research Institute (ESSRI) is to quantify the region’s natural and cultural heritage at various scales across land and its flanking oceans, as well as its time-scales ranging from the early Phanerozoic (some 540 million years) to the evolution of the Anthropocene (changes) following the emergence of the first human-culture on the planet some 200 thousand years ago. Here we illustrate the value of this linked research through a number of examples, including: (i) geological field mapping with the aid of drone, satellite and geophysical methods, and geochemical fingerprinting; (ii) regional ground and surface water interaction studies; (iii) monitoring soil erosion, mine tailing dam stability and farming practices linked to food security and development; (iv) ecosystem services through specific biodiversity changes based on spatial logging of marine (oysters and whales) and terrestrial (termites, frogs and monkeys) animals. We find that the history of this margin is highly episodic and complex by, for example, the successful application of ambient noise and groundwater monitoring to assess human-impacted ecosystems. This is also being explored with local Khoisan representatives and rural communities through Citizen Science. Our goal is to publicly share and disseminate the scientific and cultural data, through initiatives like the Africa Alive Corridor 10: ‘Homo Sapiens’ that embraces storytelling along the entire southern coast. It is envisioned that this approach will begin to develop the requisite integrated technological and societal practices that can contribute toward the needs of an ever-evolving and changing global ‘village’
    corecore