26 research outputs found
Simulated Neutrino Signals of Low and Intermediate Energy Neutrinos on Cd Detectors
Neutrino-nucleus reactions cross sections, obtained for neutrino energies in the range εν ≤ 100–120 MeV (low- and intermediate-energy range), which refer to promising neutrino detection targets of current terrestrial neutrino experiments, are presented and discussed. At first, we evaluated original cross sections for elastic scattering of neutrinos produced from various astrophysical and laboratory neutrino sources with the most abundant Cd isotopes 112Cd, 114Cd, and 116Cd. These isotopes constitute the main material of the COBRA detector aiming to search for neutrinoless double beta decay events and neutrino-nucleus scattering events at the Gran Sasso laboratory (LNGS). The coherent ν-nucleus reaction channel addressed with emphasis here, dominates the neutral current ν-nucleus scattering, events of which have only recently been observed for a first time in the COHERENT experiment at Oak Ridge. Subsequently, simulated ν-signals expected to be recorded at Cd detectors are derived through the application of modern simulation techniques and employment of reliable neutrino distributions of astrophysical ν-sources (as the solar, supernova, and Earth neutrinos), as well as laboratory neutrinos (like the reactor neutrinos, the neutrinos produced from pion-muon decay at rest and the β-beam neutrinos produced from the acceleration of radioactive isotopes at storage rings as e.g., at CERN).PACS numbers: 26.50.+x, 25.30.Pt, 97.60.Bw, 25.30.-c, 23.40.Bw, 21.60.J
Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones
The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms
of shell model employing a realistic effective interaction derived from the
Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by
resorting to an analysis of the low-energy spectra of the isotones with A>= 91.
Comparison shows that our results are in very satisfactory agreement with the
available experimental data. This supports confidence in the predictions of our
calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
We have investigated the role of proton-neutron pairing in the context of the
Quasiparticle Random Phase approximation formalism. This way the neutrinoless
double beta decay matrix elements of the experimentally interesting A= 48, 76,
82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found
that the inclusion of proton-neutron pairing influences the neutrinoless double
beta decay rates significantly, in all cases allowing for larger values of the
expectation value of light neutrino masses. Using the best presently available
experimental limits on the half life-time of neutrinoless double beta decay we
have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page
Neutrinoless Double Beta Decay in Gauge Theories
Neutrinoless double beta decay is a very important process both from the
particle and nuclear physics point of view. Its observation will severely
constrain the existing models and signal that the neutrinos are massive
Majorana particles. From the elementary particle point of view it pops up in
almost every model. In addition to the traditional mechanisms, like the
neutrino mass, the admixture of right handed currents etc, it may occur due to
the R-parity violating supersymmetric (SUSY) interactions. From the nuclear
physics point of view it is challenging, because: 1) The relevant nuclei have
complicated nuclear structure. 2) The energetically allowed transitions are
exhaust a small part of all the strength. 3) One must cope with the short
distance behavior of the transition operators, especially when the intermediate
particles are heavy (eg in SUSY models). Thus novel effects, like the double
beta decay of pions in flight between nucleons, have to be considered. 4) The
intermediate momenta involved are about 100 MeV. Thus one has to take into
account possible momentum dependent terms in the nucleon current. We find that,
for the mass mechanism, such modifications of the nucleon current for light
neutrinos reduce the nuclear matrix elements by about 25 per cent, almost
regardless of the nuclear model. In the case of heavy neutrinos the effect is
much larger and model dependent.
Taking the above effects into account, the available nuclear matrix elements
for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130,
136 and 150 and the experimental limits on the life times we have extracted new
stringent limits on the average neutrino mass and on the R-parity violating
coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
Theory of neutrinoless double beta decay
Neutrinoless double beta decay, which is a very old and yet elusive process,
is reviewed. Its observation will signal that lepton number is not conserved
and the neutrinos are Majorana particles. More importantly it is our best hope
for determining the absolute neutrino mass scale at the level of a few tens of
meV. To achieve the last goal certain hurdles have to be overcome involving
particle, nuclear and experimental physics. Nuclear physics is important for
extracting the useful information from the data. One must accurately evaluate
the relevant nuclear matrix elements, a formidable task. To this end, we review
the sophisticated nuclear structure approaches recently been developed, which
give confidence that the needed nuclear matrix elements can be reliably
calculated. From an experimental point of view it is challenging, since the
life times are long and one has to fight against formidable backgrounds. If a
signal is found, it will be a tremendous accomplishment. Then, of course, the
real task is going to be the extraction of the neutrino mass from the
observations. This is not trivial, since current particle models predict the
presence of many mechanisms other than the neutrino mass, which may contribute
or even dominate this process. We will, in particular, consider the following
processes: (i)The neutrino induced, but neutrino mass independent contribution.
(ii)Heavy left and/or right handed neutrino mass contributions.
(iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY)
contributions. We will show that it is possible to disentangle the various
mechanisms and unambiguously extract the important neutrino mass scale, if all
the signatures of the reaction are searched in a sufficient number of nuclear
isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP
(Reports on Progress in Physics), copyright RO
Simulated neutrino signals of low and intermediate energy neutrinos on Cd detectors
Neutrino-nucleus reactions cross sections, obtained for neutrino energies in
the range MeV (low- and intermediate-energy
range), which refer to promising neutrino detection targets of current
terrestrial neutrino experiments, are presented and discussed. At first, we
evaluated original cross sections for elastic scattering of neutrinos produced
from various astrophysical and laboratory neutrino sources with the most
abundant Cd isotopes Cd, Cd and Cd. These isotopes
constitute the main material of the COBRA detector aiming to search for
neutrinoless double beta decay events and neutrino-nucleus scattering events at
the Gran Sasso laboratory (LNGS). The coherent -nucleus reaction channel
addressed with emphasis here, dominates the neutral current -nucleus
scattering, events of which have only recently been observed for a first time
in the COHERENT experiment at Oak Ridge. Subsequently, simulated -signals
expected to be recorded at Cd detectors are derived through the application of
modern simulation techniques and employment of reliable neutrino distributions
of astrophysical -sources (as the solar, supernova and Earth neutrinos),
as well as laboratory neutrinos (like the reactor neutrinos, the neutrinos
produced from pion-muon decay at rest and the -beam neutrinos produced
from the acceleration of radioactive isotopes at storage rings as e.g. at
CERN)