6 research outputs found

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: Expansion of the facial and neuroimaging features

    No full text
    Adaptor protein complex-4 (AP4) is a component of intracellular transportation of proteins, which is thought to have a unique role in neurons. Recently, mutations affecting all four subunits of AP4 (AP4M1, AP4E1, AP4S1, and AP4B1) have been found to cause similar autosomal recessive phenotype consisting of tetraplegic cerebral palsy and intellectual disability. The aim of this study was analyzing AP4 genes in three new families with this phenotype, and discussing their clinical findings with an emphasis on neuroimaging and facial features. Using homozygosity mapping followed by whole-exome sequencing, we identified two novel homozygous mutations in AP4M1 and a homozygous deletion in AP4B1 in three pairs of siblings. Spastic tetraplegia, microcephaly, severe intellectual disability, limited speech, and stereotypic laughter were common findings in our patients. All patients also had similar facial features consisting of coarse and hypotonic face, bitemporal narrowing, bulbous nose with broad nasal ridge, and short philtrum which were not described in patients with AP4M1 and AP4B1 mutations previously. The patients presented here and previously with AP4M1, AP4B1, and AP4E1 mutations shared brain abnormalities including asymmetrical ventriculomegaly, thin splenium of the corpus callosum, and reduced white matter volume. The patients also had hippocampal globoid formation and thin hippocampus. In conclusion, disorders due to mutations in AP4 complex have similar neurological, facial, and cranial imaging findings. Thus, these four genes encoding AP4 subunits should be screened in patients with autosomal recessive spastic tetraplegic cerebral palsy, severe intellectual disability, and stereotypic laughter, especially with the described facial and cranial MRI features. (c) 2014 Wiley Periodicals, Inc

    Phenotypical spectrum of SACS variants: Neuromuscular perspective of a complex neurodegenerative disorder

    No full text
    Objectives Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by the SACS gene variants. Main clinical features include early-onset and progressive cerebellar ataxia, spasticity, sensorimotor polyneuropathy. However, the phenotypic spectrum expanded with the increased availability of next-generation sequencing methods. Materials and Methods Herein, we describe the clinical features of nine patients from seven unrelated families with SACS variants from the cohort of the Neuromuscular Disorders Unit of the Neurology Department of the Istanbul University, Istanbul Faculty of Medicine. Results Seven patients were male. Seven patients in our cohort had disease onset in the first decade of life. Eight patients were born to consanguineous marriages. Distal weakness in the lower limbs was a prominent feature in all of our patients. Seven patients had ataxia, and six patients had spasticity. Interestingly, one patient showed an isolated Charcot-Marie-Tooth-like phenotype. Five patients showed sensorimotor demyelinating polyneuropathy in the nerve conduction studies. Linear pontine hypointensity was the most frequent cranial magnetic resonance imaging (MRI) abnormality. Two patients with a later disease onset had a homozygous c.11542_11544delATT (p.Ile3848del) variant. The rest of the identified variants were scattered throughout the SACS gene. Conclusions Atypical clinical features in our patients highlight that the phenotypic spectrum of ARSACS can be observed in a wide range

    NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy

    No full text
    N-glycanase 1 (NGLY1) is a conserved enzyme that is responsible for the deglycosylation of misfolded N-glycosylated proteins in the cytoplasm prior to their proteasome-mediated degradation. Disruption of this degradation process has been associated with various neurologic diseases including amyotrophic lateral sclerosis and Parkinson's disease. Here, we describe two siblings with neuromotor impairment, apparent intellectual disability, corneal opacities, and neuropathy who were found to possess a novel homozygous frame-shift mutation due to a 4 base pair deletion in NGLY1 (c.1533_1536delTCAA. p.Asn511LysfsX51). We hypothesize that this mutation likely limits the capability of neuronal cells to respond to stress due to accumulation of misfolded proteins, thereby impairing their survival and resulting in progressive loss of neurological function. (C) 2014 Elsevier Masson SAS. All rights reserved

    An association analysis at 2q36 reveals a new candidate susceptibility gene for juvenile absence epilepsy and/or absence seizures associated with generalized tonic-clonic seizures

    No full text
    Purpose: To further evaluate the previously shown linkage of absence epilepsy (AE) to 2q36, both in human and WAG/Rij absence rat models, a 160-kb region at 2q36 containing eight genes with expressions in the brain was targeted in a case-control association study involving 205 Turkish patients with AE and 219 controls

    NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy

    No full text
    N-glycanase 1 (NGLY1) is a conserved enzyme that is responsible for the deglycosylation of misfolded N-glycosylated proteins in the cytoplasm prior to their proteosome-mediated degradation. Disruption of this degradation process has been associated with various neurologic diseases including amyotrophic lateral sclerosis and Parkinson’s disease. Here, we describe two siblings with neuromotor impairment, apparent intellectual disability, corneal opacities, and neuropathy who were found to possess a novel homozygous frame-shift mutation due to a 4 base pair deletion in NGLY1 (c.1533_1536delTCAA, p.Asn511LysfsX51). We hypothesize that this mutation causes the capability of neuronal cells to respond to stress due to accumulation of misfolded proteins, thereby impairing their survival and resulting in progressive loss of neurological function
    corecore