1,456 research outputs found

    An Update of Weed Flora of Vıneyards ın Northwestern Turkey

    Full text link
    The weed flora of vineyards in northwestern Turkey was determined in a survey carried out in 93 vineyards. Total of 68 species 53 dicotyledonous and 11 monocotyledonous belonging to 32 families were identified in grape growing areas. The majority of weed species were annual species with different vegetation periods. The dominant weed species in the region were Capsella bursa pastoris, Convolvulus arvensis, Senecio vulgaris, Stellaria media, Sorghum halepense, Euphorbia helioscopia. Meanwhile frequent families were Poaceae, Asteraceae, Brassicaceae, Fabaceae, Geraniaceae, Lamiaceae, Polygonaceae and Euphorbiaceae

    Fluctuation theorem for constrained equilibrium systems

    Full text link
    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as iso-kinetic and Nos\'e-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless finite-time averages of the phase-space contraction rate have non-trivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for non-equilibrium stationary states, and appropriate to constrained equilibrium states. Moreover we show these fluctuations are distributed according to a Gaussian curve for long-enough times. Three different systems are considered here, namely (i) a fluid composed of particles interacting with Lennard-Jones potentials; (ii) a harmonic oscillator with Nos\'e-Hoover thermostatting; (iii) a simple hyperbolic two-dimensional map.Comment: To appear in Phys. Rev.

    Flowing Between Fermionic Fixed Points

    Full text link
    We study holographic Wilsonian renormalization group flows for bulk spinor fields in AdS. We use this to compute the all-loop beta function for fermionic double trace operators in the dual conformal field theory.Comment: 21 pages. V2: Acknowledgement added; v3: Typo correcte

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde

    Fluctuations around the Tachyon Vacuum in Open String Field Theory

    Full text link
    We consider quadratic fluctuations around the tachyon vacuum numerically in open string field theory. We work on a space HNvac{\cal H}_N^{{\rm vac}} spanned by basis string states used in the Schnabl's vacuum solution. We show that the truncated form of the Schnabl's vacuum solution on HNvac{\cal H}_N^{{\rm vac}} is well-behaved in numerical work. The orthogonal basis for the new BRST operator Q~\tilde Q on HNvac{\cal H}_N^{{\rm vac}} and the quadratic forms of potentials for independent fields around the vacuum are obtained. Our numerical results support that the Schnabl's vacuum solution represents the minimum energy solution for arbitrary fluctuations also in open string field theory.Comment: 16 pages, 2 figures, some comments and one table added, version to appear in JHE

    Mixed RG Flows and Hydrodynamics at Finite Holographic Screen

    Full text link
    We consider quark-gluon plasma with chemical potential and study renormalization group flows of transport coefficients in the framework of gauge/gravity duality. We first study them using the flow equations and compare the results with hydrodynamic results by calculating the Green functions on the arbitrary slice. Two results match exactly. Transport coefficients at arbitrary scale is ontained by calculating hydrodynamics Green functions. When either momentum or charge vanishes, transport coefficients decouple from each other.Comment: 22 pages, 6 figure

    Baryogenesis and Degenerate Neutrinos

    Get PDF
    We bring the theoretical issue of whether two important cosmological demands, baryon asymmetry and degenerate neutrinos as hot dark matter, can be compatible in the context of the seesaw mechanism. To realize leptogenesis with almost degenerate Majorana neutrinos without severe fine-tuning of parameters, we propose the hybrid seesaw mechanism with a heavy Higgs triplet and right-handed neutrinos. Constructing a minimal hybrid seesaw model with SO(3) flavor symmetry for the neutrino sector, we show that the mass splittings for the atmospheric and solar neutrino oscillations which are consistent with the requirements for leptogenesis can naturally arise.Comment: 13 pages with one figure using axodraw.st

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qˉq\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure

    Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms

    Full text link
    We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the constraint of weak mixing angle by introducing localized brane kinetic terms in higher dimensional GHU models with bulk and simple gauge groups. We find that those terms lead to a ratio between Higgs and W boson masses, which is a little bit deviated from the one derived in the standard model. From numerical analysis, we find that the current lower bound on the Higgs mass tends to prefer to exceptional groups E(6), E(7), E(8) rather than other groups like SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of the compactification scales. For the compactification scale below 1 TeV, the Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are predicted to be less than the current lower bound unless a model parameter responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally large enough. To see how the situation is changed in more higher dimensional GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out from our numerical analysis that these higher dimensional GHU models with gauge groups except for E(6) can lead to the Higgs boson whose masses are predicted to be above the current lower bound only for the compatification scale above 1 TeV without taking unnaturally large value of the model parameter, whereas the Higgs masses in the GHU models with E(6) are compatible with the current lower bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure

    Self-bound dense objects in holographic QCD

    Full text link
    We study a self-bound dense object in the hard wall model. We consider a spherically symmetric dense object which is characterized by its radial density distribution and non-uniform but spherically symmetric chiral condensate. For this we analytically solve the partial differential equations in the hard wall model and read off the radial coordinate dependence of the density and chiral condensate according to the AdS/CFT correspondence. We then attempt to describe nucleon density profiles of a few nuclei within our framework and observe that the confinement scale changes from a free nucleon to a nucleus. We briefly discuss how to include the effect of higher dimensional operator into our study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in JHE
    corecore