124 research outputs found

    Gravitational waves from spinning eccentric binaries

    Full text link
    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relation we show that, on contrary to the general expectations, the post-Newtonian approximation should not be applied once the post-Newtonian parameter gets beyond the critical value ∼0.08−0.1\sim 0.08-0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems---which could be formed e.g. in various many-body interactions in the galactic halo---we have found that they possess very specific characteristics which may be used to identify these type of binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra

    Turkish D-light : accentuating heritage values with daylight

    Get PDF
    Historic buildings have their own cultural identity, which is often related to their aesthetic qualities such as period characteristics (geometry, size, colour, form and shape), materials and construction. Daylight is one of the primary elements contributing to the distinctiveness of the visual environment of many historic buildings, but is rarely considered as one of the components that shape the character of a building when adaptive preservation schemes of historical buildings are planned. Many historic buildings were originally designed to accommodate activities different to their new use and preserving the quality of daylight that originally contributed to their visual identity is a challenging task. Maintaining the ‘day-lit appearance’ of a building can be particularly problematic if the building is to be used as a museum or a gallery owing to the artefacts’ conservation requirements. This work investigated the opportunities of maintaining the original ambient conditions of renovated historical buildings while meeting the required daylight levels of the proposed new use. The study utilised an annual daylight simulation method and hourly weather data to preserve daylight conditions in renovated historic buildings. The model was piloted in a Turkish bathhouse situated in Bursa, Turkey, that is currently under renovation. The simulation model produces 4483 hourly values of daylight illuminance for a period of a whole year using the computer program Radiance. It is concluded that daylight characteristics should be taken into account when developing a renovation scheme. With increasing pressure on valuing historic buildings in many parts of the world, the work reported here should be beneficial to those concerned with the conservation and adaptive reuse of historic buildings. The study findings could also be useful to those interested in predicting potential energy savings by combining daylighting and electric lighting in historic buildings

    CAD modeling, multibody system formalisms and visualization : an integrated approach

    Get PDF
    In this paper an integrated approach of CAD (Computer Aided Design) modeling, generation of equations of motion, simulation and visualization of multibody systems is described. An object-oriented data model for different multibody formalisms is integrated in a commercially available CAD-3D-system. With respect to existing CAD-interfaces, different solid model design methods and various visualization demands the datamodel allow, multi body modeling with a direct interface to a data base. Different software tools like an integrated Newton-Euler formalism are able to use immediately the parametrized multi body system data base. For multibody systems with closed kinematic loops a set of ordinary differential equations and decoupled algebraic equations is formulated automatically which can be solved with explicit multistep integration algorithms. This is achieved by a minimal set of generalized coordinates being specified during the numerical integration. A additional interface provides data for visualization from the simulation tool

    Preparedness for Pediatric Office Emergencies: A Multicenter, Simulation-Based Study

    Get PDF
    OBJECTIVES Pediatric emergencies can occur in pediatric primary care offices. However, few studies have measured emergency preparedness, or the processes of emergency care, provided in the pediatric office setting. In this study, we aimed to measure emergency preparedness and care in a national cohort of pediatric offices. METHODS This was a multicenter study conducted over 15 months. Emergency preparedness scores were calculated as a percentage adherence to 2 checklists on the basis of the American Academy of Pediatrics guidelines (essential equipment and supplies and policies and protocols checklists). To measure the quality of emergency care, we recruited office teams for simulation sessions consisting of 2 patients: a child with respiratory distress and a child with a seizure. An unweighted percentage of adherence to checklists for each case was calculated. RESULTS Forty-eight teams from 42 offices across 9 states participated. The mean emergency preparedness score was 74.7% (SD: 12.9). The mean essential equipment and supplies subscore was 82.2% (SD: 15.1), and the mean policies and protocols subscore was 57.1% (SD: 25.6). Multivariable analyses revealed that independent practices and smaller total staff size were associated with lower preparedness. The median asthma case performance score was 63.6% (interquartile range: 43.2–81.2), whereas the median seizure case score was 69.2% (interquartile range: 46.2–80.8). Offices that had a standardized process of contacting emergency medical services (EMS) had a higher rate of activating EMS during the simulations. CONCLUSIONS Pediatric office preparedness remains suboptimal in a multicenter cohort, especially in smaller, independent practices. Academic and community partnerships using simulation can help address gaps and implement important processes like contacting EMS

    Social Media, Gender and the Mediatisation of War: Exploring the German Armed Forces’ Visual Representation of the Afghanistan Operation on Facebook

    Get PDF
    Studies on the mediatisation of war point to attempts of governments to regulate the visual perspective of their involvements in armed conflict – the most notable example being the practice of ‘embedded reporting’ in Iraq and Afghanistan. This paper focuses on a different strategy of visual meaning-making, namely, the publication of images on social media by armed forces themselves. Specifically, we argue that the mediatisation of war literature could profit from an increased engagement with feminist research, both within Critical Security/Critical Military Studies and within Science and Technology Studies that highlight the close connection between masculinity, technology and control. The article examines the German military mission in Afghanistan as represented on the German armed forces’ official Facebook page. Germany constitutes an interesting, and largely neglected, case for the growing literature on the mediatisation of war: its strong antimilitarist political culture makes the representation of war particularly delicate. The paper examines specific representational patterns of Germany’s involvement in Afghanistan and discusses the implications which arise from what is placed inside the frame of visibility and what remains out of its view

    An overview of realist evaluation for simulation-based education

    Get PDF
    This article describes the key features of realist (realistic) evaluation and illustrates their application using, as an example, a simulation-based course for final year medical students. The use of simulation-based education (SBE) is increasing and so too is the evidence supporting its value as a powerful technique which can lead to substantial educational benefits. Accompanying these changes is a call for research into its use to be more theory-driven and to investigate both 'Did it work?' and as importantly 'Why did it work (or not)?' An evaluation methodology that is capable of answering both questions is realist evaluation. Realist evaluation is an emerging methodology that is suited to evaluating complex interventions such as SBE. The realist philosophy positions itself between positivist and constructivist paradigms and seeks to answer the question 'What works for whom, in what circumstances and why?' In seeking to answer this question, realist evaluation sets out to identify three fundamental components of an intervention, namely context, mechanism and outcome. Educational programmes work (successful outcomes) when theory-driven interventions (mechanisms) are applied to groups under appropriate conditions (context). Realist research uses a mixed methods (qualitative and quantitative) approach to gathering data in order to test the proposed context-mechanism-outcome (CMO) configurations of the intervention under investigation. Realist evaluation offers a valuable methodology for researchers investigating interventions utilising simulation-based education. By investigating and understanding the context, mechanisms and outcomes of SBE interventions, realist evaluation can provide the deeper level of understanding being called for

    A History of Discrete Event Simulation Programming Languages

    Get PDF
    The history of simulation programming languages is organized as a progression in periods of similar developments. The five periods, spanning 1955-1986, are labeled: The Period of Search (1955-1960); The Advent (1961-1965); The Formative Period (1966-1970); The Expansional Period (1971-1978); and The Period of Consolidation and Regeneration (1979-1986). The focus is on recognizing the people and places that have made important contributions in addition to the nature of the contribution. A balance between comprehensive and in-depth treatment has been reached by providing more detailed description of those languages which have or have had major use. Over 30 languages are mentioned, and numerous variations are described in the major contributors. A concluding summary notes the concepts and techniques either originating with simulation programming languages or given significant visibility by them

    Examining the correlates and drivers of human population distributions across low-and middle-income countries

    Get PDF
    Geographical factors have influenced the distributions and densities of global human population distributions for centuries. Climatic regimes have made some regions more habitable than others, harsh topography has discouraged human settlement, and transport links have encouraged population growth. A better understanding of these types of relationships enables both improved mapping of population distributions today and modelling of future scenarios. However, few comprehensive studies of the relationships between population spatial distributions and the range of drivers and correlates that exist have been undertaken at all, much less at high spatial resolutions, and particularly across the low-and middle-income countries. Here, we quantify the relative importance of multiple types of drivers and covariates in explaining observed population densities across 32 low-and middle-income countries over four continents using machine-learning approaches. We find that, while relationships between population densities and geographical factors show some variation between regions, theyare generally remarkably consistent,pointing to universal drivers of human population distribution. Here,we find that a set of geographical features relating to the built environment, ecology and topography consistently explain the majority of variability in population distributions at fine spatial scales across the low-and middle-income regions of the world.</p
    • …
    corecore