674 research outputs found

    Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system

    Get PDF
    The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems

    Mobilization of pro-inflammatory lipids in obese Plscr3-deficient mice

    Get PDF
    Metabolic profiling of mice deficient in phospholipid scramblase 3 reveals a possible molecular link between obesity and inflammation

    Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides.

    Get PDF
    Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi

    Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer.

    Get PDF
    BackgroundSipuleucel-T is a US Food and Drug Administration-approved immunotherapy for asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Its mechanism of action is not fully understood. This prospective trial evaluated the direct immune effects of systemically administered sipuleucel-T on prostatic cancer tissue in the preoperative setting.MethodsPatients with untreated localized prostate cancer were treated on an open-label Phase II study of sipuleucel-T prior to planned radical prostatectomy (RP). Immune infiltrates in RP specimens (posttreatment) and in paired pretreatment biopsies were evaluated by immunohistochemistry (IHC). Correlations between circulating immune response and IHC were assessed using Spearman rank order.ResultsOf the 42 enrolled patients, 37 were evaluable. Adverse events were primarily transient, mild-to-moderate and infusion related. Patients developed T cell proliferation and interferon-γ responses detectable in the blood following treatment. Furthermore, a greater-than-three-fold increase in infiltrating CD3(+), CD4(+) FOXP3(-), and CD8(+) T cells was observed in the RP tissues compared with the pretreatment biopsy (binomial proportions: all P < .001). This level of T cell infiltration was observed at the tumor interface, and was not seen in a control group consisting of 12 concurrent patients who did not receive any neoadjuvant treatment prior to RP. The majority of infiltrating T cells were PD-1(+) and Ki-67(+), consistent with activated T cells. Importantly, the magnitude of the circulating immune response did not directly correlate with T cell infiltration within the prostate based upon Spearman's rank order correlation.ConclusionsThis study is the first to demonstrate a local immune effect from the administration of sipuleucel-T. Neoadjuvant sipuleucel-T elicits both a systemic antigen-specific T cell response and the recruitment of activated effector T cells into the prostate tumor microenvironment

    Charge optimization of the interface between protein kinases and their ligands

    Get PDF
    Abstract: Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based charge optimization theory with a simple, quadratic programming algorithm and the UHBD Poisson-Boltzmann solver. This method allows one to compute the best set of point charges for a ligand or ligand region based on the ligand and receptor shape, and the receptor partial charges, by optimizing the binding free energy obtained from a continuumsolvent model. We applied charge optimization to a fragment of the heat-stable protein kinase inhibitor (PKI) of protein kinase A (PKA), to three flavopiridol inhibitors of CDK2, and to cyclin A which interacts with CDK2 to regulate the cell cycle. We found that a combination of global (involving every charge) and local (involving only charges in a local region) optimization can give useful hints for designing better inhibitors. Although some parts of an inhibitor may already contribute significantly to binding, we found that they could still be the most important targets for modifications to obtain stronger binders. In studying the binding of flavopiridol inhibitors to CDK2, comparable binding affinity could be obtained regardless of whether the net charges of the inhibitors were constrained to Ϫ2, Ϫ1, 0, 1, or 2 during the optimization. This provides flexibility in inhibitor design when a certain net charge of the inhibitor is desired in addition to strong binding affinity. For the study of the PKA-PKI and CDK2-cyclin A interfaces, we identified residues whose charge distributions are already close to optimal and those whose charge distributions could be refined to further improve binding

    MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma

    Get PDF
    Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtypespecific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM
    • …
    corecore