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Abstract: Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful
technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize
its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based
charge optimization theory with a simple, quadratic programming algorithm and the UHBD Poisson–Boltzmann solver.
This method allows one to compute the best set of point charges for a ligand or ligand region based on the ligand and
receptor shape, and the receptor partial charges, by optimizing the binding free energy obtained from a continuum-
solvent model. We applied charge optimization to a fragment of the heat-stable protein kinase inhibitor (PKI) of protein
kinase A (PKA), to three flavopiridol inhibitors of CDK2, and to cyclin A which interacts with CDK2 to regulate the
cell cycle. We found that a combination of global (involving every charge) and local (involving only charges in a local
region) optimization can give useful hints for designing better inhibitors. Although some parts of an inhibitor may
already contribute significantly to binding, we found that they could still be the most important targets for modifications
to obtain stronger binders. In studying the binding of flavopiridol inhibitors to CDK2, comparable binding affinity could
be obtained regardless of whether the net charges of the inhibitors were constrained to �2, �1, 0, 1, or 2 during the
optimization. This provides flexibility in inhibitor design when a certain net charge of the inhibitor is desired in addition
to strong binding affinity. For the study of the PKA–PKI and CDK2–cyclin A interfaces, we identified residues whose
charge distributions are already close to optimal and those whose charge distributions could be refined to further improve
binding.
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Introduction

Optimization of the electrostatic complementarity between a ligand
and a receptor by balancing their interaction energy with the desol-
vation penalty is a problem that has been studied extensively by Bruce
Tidor’s group at MIT.1–8 The theory is well established, and has been
applied to a few biological systems including the barstar–barnase
interface6,7 and chorismate mutase.8 The theory allows one to com-
pute the electrostatically optimal charge distribution for a given ligand
with respect to charges on a given receptor, the ligand’s own spatial
parameters (position and shape), and the spatial parameters of the
receptor within a continuum-solvent electrostatic model.1,3,4

Our interests involve utilizing results from charge optimization
in molecular design. Previously, we used sensitivity analysis as a
way to guide drug design. Therefore, we first examined which
charges were already useful for binding and kept those portions in
a lead optimization process. We then focused on modifying other
portions of the ligand to search for new inhibitors with improved
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binding affinity. Another way to utilize sensitivity analysis is to
find out which regions can provide significant improvement in
binding affinity if their charge distributions are modified according
to the analysis. We have also utilized mathematical tricks to speed
up such an analysis.9,10 However, such analysis does not usually
lead to the charge distribution that gives the maximum improve-
ment in binding affinity. This can be achieved if one is willing to
invest additional computational effort such as using the charge
optimization method introduced by Tidor’s group. In this study,
we try to learn how to better utilize results from charge optimiza-
tion to design compounds that can actually be made. A charge
optimization only rearranges the charge distribution of an existing
inhibitor. Finding a compound that fits this optimal charge distri-
bution and can actually be chemically synthesized is not always
straightforward. Here, we try to gain some insights by carrying out
charge optimization on two systems that we studied before: the
interactions between protein kinase A and the residue 5–24 frag-
ment of its inhibitor PKI (PKI-(5–24)), and the interactions be-
tween cyclin-dependent kinase 2 (CDK2) and the flavopiridol class
of inhibitors. In addition, we include a larger system in this study:
the interface between CDK2 and cyclin A.

The PKA–PKI System

The PKA–PKI complex has been studied with extensive mutagen-
esis experiments,11–19 crystallography,20–22 and computational
sensitivity analysis.23 The system is of interest for a variety of
reasons, including its function as a useful model for studying
protein kinase–substrate recognition, and for the design of small
molecule inhibitors of protein kinases.20,23 Numerous derivatives
and fragments of PKI-(5–24) have been synthesized and evaluated
for binding affinity, and the determinants of ligand binding are
well understood.17 Likewise, crystallographic data has revealed
the structural properties of PKA that promote recognition.20 A
recent study by Gould and Wong applied computational sensitivity
analysis to PKI-(5–24) to propose a small-molecule scaffold frag-
ment of the peptide for inhibitor design.23

Because of the volume of biological data and previous compu-
tational experience with this system, we found the complex to be
an ideal subject for charge optimization experiments. The peptide
inhibitor is quite large (306 atoms), and so we focused on fast
methods for charge optimization and efficient, useful ways to
express the resulting data. Additionally, PKI-(5–24) is a very
potent inhibitor of PKA (Ki � 2.3 nM),17 and substantially
improving its binding affinity may be quite challenging. Identify-
ing electrostatically vulnerable regions of the peptide could prove
particularly valuable to an efficient design effort. One of our
primary goals was to use charge optimization to quickly target
residues, functional groups, and even atoms on the large inhibitor
where modifications could be most profitable. We examine the use
of two optimization procedures: (1) global optimization in which
the charge of every atom is allowed to vary during the charge
optimization, and (2) local optimization in which only the charges
in a local region are allowed to vary. We try to learn how these
optimization results can help to suggest chemical modifications
that can improve binding.

The CDK2–Cyclin A System

Cyclin-dependent kinase 2 (CDK2) and the CDKs in general are
popular targets for antiproliferative drug design because of their
vital role in cell cycle regulation.9,24 As their name suggests,
another family of proteins known as the cyclins are required for
CDK activation. In this study, we examine the protein–protein
interface that forms between CDK2 and cyclin A during the
S-phase (DNA replication) of the cell cycle.9,24

The crystal structure used for this part of the study includes
CDK2 with ATP in its active site along with a fragment of cyclin
A containing residues 173–432.24 This CDK2–cyclin A fragment
complex has nearly the same histone phosphorylation activity as
the full CDK2–cyclin A complex.24 We will present preliminary
results from a fixed conformation model of cyclin A (which is well
justified due to its relatively inflexible interfacial region) from an
ongoing and thorough study of both the unphosphorylated and
phosphorylated systems. The interfacial region (547 atoms) that
we consider on cyclin A includes the 32 amino acids whose atoms
are closest to CDK2 in the unphosphorylated complex crystal
structure. In one optimization, we considered all interfacial atoms
simultaneously. Additionally, we optimized each residue in the
interface individually with respect to the remaining system (which
was held constant at its original CHARMM27 parameters).25 We
hoped to glean information on how these results can guide inhib-
itor design.

Methods

Binding Free-Energy Model

In all instances, binding free-energy changes and electrostatic
potentials arising from the Poisson Equation were computed with
UHBD.26,27 Coulombic contributions were computed with a sep-
arate script that accounted for all nonbonded interactions. In most
cases, partial charges were taken from the CHARMM27 all-atom
force field28 (if they were not available, they were obtained by
performing quantum chemical calculations as discussed in the
Molecular Modeling section), and in all cases, van der Waals radii
were taken from this same force field. The Poisson equation was
solved using a 240-Å3 grid with 0.4-Å grid spacing for the PKA–
PKI system and the CDK2–Cyclin A system. However, for sys-
tems involving CDK2 bound to deschloroflavopiridol or other
model structures, a 175 � 250 � 215 Å3 grid was used with 0.3-Å
grid spacing.9 The internal or solute dielectric was set at 2, while
the external or solvent dielectric was set at 78. In computing the
binding free-energy changes, we first considered three systems
separately with respect to their absolute free energies—the com-
plex (bin), the ligand (lig), and the receptor (rec). Our model
dictates that:

Gi � GCOUL,i � GP,i � GSA,i (1)

where Gi is the free energy of system i with contributions from
Coulomb’s Law (GCOUL), the reaction field from solution of the
Poisson equation (GP), and a hydrophobic term (GSA), which we
assume to be proportional to the solvent accessible surface area.
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We computed the hydrophobic term according to GSA �
�(SASA), where SASA is the solvent-accessible surface area of
the system and � is a surface tension. We let � � 25 cal/mol � A2

as in our previous work.9 After computing these terms, one can
approximate the binding free energy change by:

�bindG � Gbin � �Grec � Glig� (2)

Our model of binding affinity uses a fixed conformation approxi-
mation in which it is assumed that the ligand and receptor have
conformations identical to those observed in the complex crystal
structure.9,23,29

Charge Optimization Theory

We now briefly review portions of the charge optimization theory
developed by Tidor et al. that are relevant to our study.1,3,30 In the
previous section, we presented a specific treatment of the follow-
ing, more general model for binding free-energy changes:

�bindG � �electG � �npG (3)

The binding free-energy change is simply divided into an electro-
static contribution that is a function of charge, and a nonpolar
contribution that is not a function of charge but only of spatial
parameters. One can write the electrostatic contribution to the
binding free-energy change as the sum of separable Coulombic
and reaction field terms as we demonstrated in the previous sec-
tion. Alternatively, one can express the electrostatic term as the
sum of desolvation penalty and interaction energy terms using
matrix–vector notation:1,3,30

�electG �
1

2
QL

TLQL �
1

2
QR

T RQR � QR
T CQL (4)

The vectors QL and QR contain the ligand and receptor charges,
respectively, while the symmetric matrices L and R are indepen-
dent of the charges.1,3,30 The matrix C, which again is independent
of the charges, help to calculate the electrostatic interactions be-
tween the ligand and the receptor.1,3,30 The elements of these
matrices are defined as follows:

Lij � �i
bound�rj

L� � �i
unbound�rj

L�

Rij � �i
bound�rj

R� � �i
unbound�rj

R�

�CTQR�i � �
j�1

m

qj
R�i

bound�rj
L� (5)

where m is the number of receptor atoms. bound and unbound
label the bound and unbound states, respectively. L and R label the
ligand and receptor, respectively. Thus, �i

bound(rj
L) is the electro-

static potential on atom j of the ligand located at rj
L when a charge

of �1 is put at atom i and when the ligand is bound to the
receptor.1,3,30 The binding affinity can be minimized with respect
to the ligand charge distribution (in this case with point charges as
a basis) by taking the gradient of eq. (4):1,3,30

���electG� � LQL � CTQR � 0

LQL,opt � �CTQR (6)

Equation (6) can be solved directly by LU decomposition, but the
addition of constraints to the optimal charge distribution requires
quadratic programming. Constraints are usually added because
there is no guarantee that the optimized charges will sum to an
integral molecular net charge or that they will have physically
reasonable magnitudes if results are taken directly from eq. (6).

A region of a molecule can also be charge optimized in a
similar manner. For example, one could optimize a functional
group on a ligand while holding the remaining atoms at their initial
charges. Here, we make a distinction between the total ligand (L)
charges, the fragment of the ligand to be optimized (Lfrag), and the
remaining fragment of the ligand (Lrem) which we hold constant.
We define the matrices somewhat differently:7

Lij � �i
bound�rj

Lfrag� � �i
unbound�rj

Lfrag�

�CTQR�Lrem�i � �
j�1

m

qj
R�j

bound�ri
Lfrag�

� �
j�1

m

��j
bound�ri

Lfrag� � �j
unbound�ri

Lfrag��qj
Lrem (7)

where m is still the number of receptor atoms and n is the number
of ligand atoms held constant (the number of Lrem atoms). If the
potential matrices are defined as in eq. (7), they can be substituted
into eq. (6) just as in the global optimization case to obtain local
optimization results that we will demonstrate to be indispensable
for addressing large systems.

Frank–Wolfe and Interior Point Algorithms

To perform constrained charge optimization, we treated the min-
imization problem with quadratic programming. The Frank–Wolfe
Method is a sequential linear approximation algorithm in which a
quadratic function is linearized and the linearization is minimized
along with some further adjustment at each iteration until the
current solution is negligibly different from the previous solu-
tion.31 The minimization of the linearized function can be accom-
plished by the revised simplex method or the faster interior point
method. The Frank–Wolfe algorithm can be summarized (in terms
of the constrained charge optimization problem) as follows where
(i) is the iteration number:31

1. Initialize the algorithm by generating a ligand charge distribu-
tion QL

(i) � QL
(0) that satisfies the desired constraints.

2. Compute the gradient of ��electG(QL
(i)).

3. Let F(QL
(i)) � grad(��electG(QL

(i)))TQL. Maximize F using
the interior point method (to be described) such that the ligand
charge magnitudes are less than or equal to 0.85e, and such
that the charges sum to a specified integral molecular net
charge. The resulting vector shall be called QL

lin(i�1). Note that
we limited the magnitude of an atomic partial charge to be
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0.85e. Otherwise, very large unphysical charges can result
from an unconstrained charge optimization.

4. Parameterize ��electG such that P(t) � ��electG(QL) where
QL � QL

(i) � t(QL
lin(i�1) � QL

(i)) and t�[0:1]. Maximize P(t)
and set the resulting QL to QL

(i�1).
5. If the length of QL

(i�1) � QL
(i) is small enough (in this work,

10�5 for big systems or 10�6 for small systems) stop. If the
length is not small enough, return to step 2 where i � i � 1.

A version of the interior point algorithm for linear program-
ming was chosen, and can be initialized with any feasible starting
vector (one that satisfies the constraints but is not necessarily
optimal or close to optimal). The method produces solutions by
iteratively moving through the feasible region at the maximum rate
(in the direction that is orthogonal to the function being mini-
mized).31 By computing the gradient of the function being mini-
mized projected onto the feasible region (the projected gradient),
the algorithm identifies the best direction for minimization in the
current iteration.31 The interior point algorithm operates efficiently
on linear programming problems that are presented in “augmented
form.”31 In this form, one expresses the problem as a maximiza-
tion subject only to equality constraints with the exception of the
default constraint, which requires that all elements of the solution
vector be greater than or equal to zero.31 In this case, we want to
minimize the linearization of the electrostatic contribution to bind-
ing affinity where all of the optimized charges (as multiples of e)
have magnitudes less than or equal to 0.85 and sum to a specified
integer:

Maximize ��LQL
�i� � CTQR�T � QL

where �qL,i� � 0.85

�
i�1

n

qi � c for c�	. . . , �1, 0, 1, . . . 
 (8)

This can be written in augmented form as follows:

Define q�L,i � qL,i � 0.85

Maximize ��LQ�L
�i� � L�0.85, . . . , 0.85�T � CTQR�T � Q�L

where q�L,i � �i � 1.7; q�L,i 	 0;

�
i�1

n

q�L,i � c � n�0.85� for c � formal charge,

n � number of ligand atoms. (9)

The variable � is a slack variable that changes along with the q�
variables during optimization. Slack variables are used in optimi-
zation problems to convert inequality constraints into equality
constraints.32 For example, constraining q� to be less than or equal
to 1.7 can also be expressed as q� � � � 1.7, where we allow �
to change with q�. These methods are well suited to large quadratic
programming problems with many constraints, and give fast initial
rates of convergence.31 The above algorithm was coded in a

variety of versions for different purposes (e.g., optimization of a
ligand charge distribution, optimization of a protein–protein inter-
facial region, and optimzation of a single side chain or group of
atoms).

Coupling Sensitivity Analysis with Charge Optimization

To be effective in using charge optimization data for molecular
design, one needs to go beyond simply examining deviations
between original and optimized charge distributions. For example,
the original charge distribution may be far away from the opti-
mized charge distribution but replacing the original charge distri-
bution with the optimized one may not necessarily improve bind-
ing significantly. In the other extreme, an optimized charge
distribution may be only slightly different from the original one
but may drastically improve binding. It is useful to estimate the
improvement in binding affinity that comes with the optimized
charge distribution. Here, we discuss this in light of our earlier
sensitivity analysis approach.9,23,29

In our earlier work, we calculated the change in binding affinity
��bindG when a charge (or a set of atomic charges in the general
case) is changed from qi

init to qi
fin by using a Taylor series expan-

sion:9

��bindG � �
�bindG


qi
�

qi�qi
init

�qi
fin � qi

init�

�
1

2 �
2�bindG


qi
2 �

qi�qi
init

�qi
fin � qi

init�2 (10)

In the fixed-conformation continuum-solvent model used here, this
second-order approximation in eq. (10) becomes exact and allows
us to calculate ��bindG defined by:

��bindG � �bindG�qL, j � qlig, j� � �bindG�qL, j, j�i � qlig, j, qL,i � qL,i
con�

(11)

Equation (11) expresses the original charge of the ligand as qlig

and the constrained, optimized charge on a given ligand atom i as
qi

con. This ��bindG measures the sensitivity of �bindG when the
charge of interest goes from the optimized to the original charge.
Here, we recast the sensitivity in a different form in terms of the
quantities obtained from solving the Poisson–Boltzmann equation.
First, we rewrite eq. (4) as

�electG �
1

2 �
i�1

n

qL,i �
j�1

n

LijqL, j �
1

2 �
i�1

m

qR,i �
j�1

m

RijqR, j

� �
i�1

m

qR,i �
j�1

n

CijqL, j (12)

In eq. (12), n is the number of ligand (L) atoms and m is the
number of receptor (R) atoms. The derivatives can now be eval-
uated as follows:
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�
�bindG


qL,k
�

qL,k�qL,k
con

� �
j�1, j�k

n

�LkjqL, j� � �
j�1

m

�Ckj
T qR, j� � LkkqL,k

con

�
2�bindG


qL,k
2 �

qL,k�qL,k
con

� Lkk (13)

We can then substitute eq. (13) into eq. (10) such that the quantity
described in eq. (11) can be evaluated:

��bindGk � � �
j�1, j�k

n

�LkjqL, j� � �
j�1

m

�Ckj
T qR, j� � LkkqL,k

con��qL,k � qL,k
con�

�
1

2
Lkk�qL,k � qL,k

con�2 (14)

When all of the ligand charges are held constant at their uncon-
strained, optimized charges and one charge k is changed back to its
original value as in:

��bindGk � �bindG�qL, j, j�k � qlig
opt, qL,k � qlig,k� � �bindG�qL, j � qlig

opt�

(15)
the first-order term becomes zero such that:7

��bindGk �
1

2
Lkk�qL,k � qL,k

opt�2 (16)

This is because the first-order derivative is zero when evaluated
under the assumption that all of the charges are at their uncon-
strained, optimized values as evidenced by the second part of eq.
(6). Equation (16) reveals that for a ligand atom k, the sensitivity
of the binding free energy to deviations from the optimized charge,
��bindGk, is directly proportional to Lkk. The larger Lkk is, the
more binding affinity is lost as an atomic charge departs from its
optimized value.

Another useful method for probing charge sensitivity (espe-
cially when dealing with large systems) is to compute ��bindG for
the perturbation of a group of charges (such as an amino acid or
side chain) while holding the remainder of the ligand at its original
charge distribution:

��bindG � �bindG�qL,i � qlig,i� � �bindG�qL,i�Lrem

� qlig,i, qL,i�Lres � qL,i
con�

��bindG �
1

2
QLres

T LQLres � QR�Lrem
T C�QLres � QLres

con �

�
1

2
QLres

TconLQLres
con (17)

where the potential matrices and Lrem are defined as in eq. (7) and
Lres refers to the charges on the residue or group of atoms being
perturbed.

Using the diagonal elements of the matrix L together with the
Taylor series implementation of sensitivity analysis, one can de-

termine how important the optimization of a ligand atom or region
is to the overall binding affinity.7,8 With this information, one can
select target areas of a ligand where optimization yields the great-
est improvement in binding affinity and then proceed to suggest
structural changes to those areas based on the constrained, opti-
mized charge distribution. We have found that it is useful to first
look at the constrained and unconstrained optimizations of the total
ligand to determine a region’s “preference” for positive or negative
charge. We could then constrain that region to have a similar
charge, with the constraint that the whole molecule has an integral
net charge, while holding the remaining charges of the ligand at
their original values.6 Optimization of a specific region of a ligand
with constraints that are guided by the total ligand optimization is
a useful method to improve electrostatic complementarity within
this model.8 Using the locally optimized charge distribution guar-
antees that the binding affinity is improved when the original
charges are replaced by the optimized ones. On the other hand, the
binding affinity may not necessarily improve when one uses the
charges obtained from a global optimization, because the binding
affinity can improve only when all the charges, including those
outside the localized regions, are all replaced by the optimized
charges.

Molecular Modeling

All molecular modeling of ligand derivatives and hypothetical
structures was done with the InsightII Builder, Biopolymer, and
Discover Modules.33 In all cases, hydrogens were added to crystal
structures using the Biopolymer Module.33 Modifications to li-
gands were constructed from the coordinates of the crystal struc-
ture using the Builder Module.33 Energy minimization was then
used to relax the new or modified functional groups in their
environment while the remainder of the system was constrained to
its original crystal structure coordinates.9 Using the Discover Mod-
ule, the functional groups were energy minimized with the In-
sightII CVFF force field and the steepest descent algorithm with a
distance-dependent dielectric such that the RMS derivative was
less than or equal to 0.001 kcal/mol � Å.33

For the free-energy calculations on the hypothetical modifica-
tions to PKI, the CHARMM27 force field parameters were used
for the unmodified ligand atoms.28 However, we employed ab
initio quantum chemical methods to obtain partial charges for the
entire side chain of any modified amino acid because they are not
available in the CHARMM27 force field. The charges were gen-
erated by Gaussian 98 using the Merz–Kollman method and the
6-31G* basis set.34–36

Results and Discussion

Charge Optimization Trends in the
CDK2–Deschloroflavopiridol System

We first applied charge optimization to three small structures from
our previous study of the CDK2–deschloroflavopiridol system and
found several important trends that would also arise in the more
complicated PKA–PKI system. The structures involved in this
analysis are shown in Figure 1. Although we have a crystal
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structure for the CDK2–deschloroflavopiridol system, the other
two structures were modeled as outlined in Sims et al.,9 using a
procedure that is nearly identical to that presented in the Molecular
Modeling section of this article. In our earlier work, we estimated
the binding affinity of deschloroflavopiridol for CDK2 to be about
�14 kcal/mol, and we gave estimates of �35 and �63 kcal/mol
for Structure 20 and Structure 25, respectively.9

To aid the optimization of the flavopiridol class of compounds,
we previously relied on gauging the importance of each charge to
binding affinity by turning its charge off and examining the extent
that the binding affinity was modified. We referred to atoms that
lost more binding affinity as having greater charge utility. In other
words, putting charges there enhance binding. We then focused on
modifying the parts of the lead compound that have low charge
utility to see whether stronger binders could be found. This strat-
egy seemed to work as we had designed structures with greater
binding affinity with just a small number of trials. Here, we carried
out similar charge utility analysis using the charges obtained from
global optimization rather than the original quantum mechanically
derived charges. Five global charge optimizations were done by
imposing five different net charge constraints: �2e, �e, 0, e, and
2e on the molecule. Each charge was constrained to a magnitude
of at most 0.85e as before. The charge redistribution after opti-
mizations improved the overall binding affinity within our model.
However, the relative importance of different atoms in contribut-
ing to binding was altered, with some became better and some
worse contributors. A consistent observation across all three sys-
tems with all five formal charge constraints was that the fraction of
atoms in a system whose original charges were not electrostatically
useful but whose charge utility improved upon optimization was
substantially higher than the fraction of atoms whose original
charges were deemed electrostatically useful and still improved in
utility (Figs. 2, 3, and 4). So, our earlier strategy that focused on
modifying the parts of the lead compound that have low charge
utility appears to be a reasonable one for inhibitor design. On the
other hand, we found that the charge utility could also be further
improved for some atoms that were originally deemed useful
because further significant improvement can be achieved by opti-

mizing their charges. Previously, we did not target these atoms for
improvement.

Figures 5, 6, and 7 compare the change in binding affinity that
occurs upon changing from the constrained, optimized charge
distribution to the original charge distribution for five different
molecular net charge constraints in all three systems. We see here
that ��bindG is strikingly insensitive to the net charge constraint,
suggesting that similar maximal binding affinity can be achieved
by placing a positive, negative, or neutral net charge on the ligand.
This suggests that one can choose the most convenient charge state
for the situation at hand.

These same three figures also contain data from local optimi-
zations of the three ligand regions defined in Figure 1. Each of
these three regions was optimized subject to the same five molec-
ular net charge constraints along with the 0.85e individual charge
magnitude constraint. For deschloroflavopiridol, optimizing region
A alone could only improve binding affinity when the total net
charge of the ligand was 1 or 2 and the improvement was very

Figure 1. Structures of the deschloroflavopiridol, model Structure 20,
and model Structure 25 each divided into three regions for local
optimization.

Figure 2. Charge utility analysis for the CDK2–deschloroflavopiridol
system.

Figure 3. Charge utility analysis for the CDK2–Structure 20 system.
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small. Optimizing region B was a bit better, especially when the
net charge of the ligand was 0 or 1. Optimizing region C provided
the best improvement for all the net charge constraints (�2, �1, 0,
1, and 2). For structure 20, optimizing region B did not provide
much improvement except when the net charge of the ligand was
1 and 2. On the other hand, optimizing regions A and C could lead
to significant improvement no matter at what total net charge the
ligand was constrained. Structure 25 produced similar results to
structure 20.

Therefore, in all three structures, the optimized charges did not
change much in region B. As discussed earlier, this region interacts
with the linker region between the N- and C-terminal lobes and is
relatively buried.9 To keep favorable interactions in this region,
charge optimization only changed the charges in the other two
regions to achieve better binding while satisfying a given net

molecular charge constraint. The feasibility of obtaining compa-
rable optimal binding affinity with different net charge constraints
gives a drug designer some flexibility in controlling other impor-
tant properties of the ligand, besides binding affinity, that deter-
mine its usefulness as a drug.

Finally, one should also note from these three figures that the
structures whose binding affinities are estimated to be higher have
��bindG values that are also much higher. For example, Structure
25 has an estimated �bindG of �63 kcal/mol, whereas deschlo-
roflavopiridol has an estimated �bindG of �14 kcal/mol.9 None-
theless, the ��bindG values for the global, constrained optimiza-

Figure 4. Charge utility analysis for the CDK2–Structure 25 system.

Figure 5. Binding affinity gain when the charges on deschlorofla-
vopiridol were optimized in the CDK2–deschloroflavopiridol system.
The ligand was constrained to five different net charges. Results when
only a part of the three ligand regions diagrammed in Figure 1 were
optimized are also shown.

Figure 6. Binding affinity gain when the charges on Structure 20 were
optimized in the CDK2–Structure 20 system. The ligand was con-
strained to five different net charges. Results when only a part of the
three ligand regions diagrammed in Figure 1 were optimized are also
shown.

Figure 7. Binding affinity gain when the charges on Structure 25 were
optimized in the CDK2–Structure 25 system. The ligand was con-
strained to five different net charges. Results when only a part of the
three ligand regions diagrammed in Figure 1 were optimized are also
shown.
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tions of Structure 25 are around 10 kcal/mol higher on average
than those of deschloroflavopiridol. This suggests that Structure
25, which has already a greater estimated binding affinity, has a
less optimal charge distribution than deschloroflavopiridol relative
to its constrained, optimized distribution. Therefore, the potential
for improving Structure 25 even further is higher.

Binding Energy Calculations for the PKA–PKI System

In our previous study of the CDK2–deschloroflavopiridol system,
we modeled analogs of deschloroflavopiridol that had been syn-
thesized and whose inhibitory activity had been measured exper-
imentally.9 By comparing the calculated binding affinity of these
compounds using the fixed conformational continuum-solvent
model as described above, one can gauge the reliability of the
model in reproducing experimental trend before one uses it to
make predictions. We pursued a similar kind of analysis here.

Many of the biological assays of the PKA–PKI system were
actually performed with truncated versions of the PKI-(5–24)
ligand that only contained residues 5–22 or 6–22.17 To make it
easier to computationally estimate the relative binding affinity of
polypeptides with different mutations, we modeled all of the
polypeptides with the same length without truncation. Because we
were using a rigid conformational model here, we only attempted
to study those mutated peptides for which there was sufficient
space in the complex to accommodate the mutation without sig-
nificant structural change to PKA and PKI. As a result, six mutated
PKIs from Glass et al.’s experiments17 were selected for compar-
ison, and we found that our model ordered their potencies correctly
(Fig. 8). It should be noted that we added a penalty relative to the

wildtype PKI-(5–24) of 0.3 kcal/mol for each sp3 rotatable bond in
the modeled peptides. For example, if a given peptide has two
more sp3 rotatable bonds than PKI-(5–24), we would add 0.6
kcal/mol to the binding free energy obtained as outlined in the
Binding Free Energy Model section. This penalty is meant to
approximate the effects of rotational entropy on our binding affin-
ity ranking, and has been employed in past computational studies
including Sims et al., Gidofalvi et al., Bohm, and Morris et
al.9,37–39

Charge Optimization of PKI-(5–24)

After computing the potentials as described in the Charge Opti-
mization Theory section with UHBD26,27 for the 306 atoms of
PKI-(5–24) with respect to PKA, we obtained unconstrained
charge optimization data by solving eq. (6) directly and fully
constrained optimization data via our implementation of the
Frank–Wolfe algorithm. During the fully constrained optimization,
magnitudes of all 306 point charges could not exceed 0.85e, and
the sum of the 306 point charges had to retain the original ligand
charges of �1e.

For each atom in each amino acid of PKI-(5–24), the absolute
value of the deviation between the fully constrained, optimized
charge and the original CHARMM27 charge was computed, and
the average value of this quantity for each amino acid appears in
Figure 9. The fully constrained optimization suggests that Phe10
has the smallest overall deviation form its optimized charge dis-
tribution. Interestingly, a 1989 article by Glass et al.18 focuses
exclusively on the effects that Phe10 has on the binding affinity of
PKI-(6–22). It is clear from the crystal structure that Phe10 fits in
a hydrophobic pocket of PKA consisting of residues 235–239
(Tyr-Pro-Pro-Phe-Phe).20 This is a highly aromatic pocket that
requires a nonpolar charge distribution for optimal interaction. The
charge optimization recognizes this property, and PKI itself ex-
ploits the aromatic pocket for tight binding. Other noteworthy
residues appear in the top 10 lowest average deviation list includ-

Figure 8. Sequences of the PKI-(5–24) analogs (referred to by Pep-
tide #) and the corresponding sequences of the computationally mod-
eled analogs (referred to by Model #) along with the experimental
binding constant of each peptide and computed binding affinity of each
model.

Figure 9. Deviations of optimized charges from their original
CHARMM27 charges for PKI-(5–24). The absolute average deviation
over atoms in each residue is shown. Results from global, fully
constrained charge optimization.
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ing Arg18 and Arg19, which are the two most important basic
residues for peptide recognition as was discovered by Kemp et
al.11 and was also evident in computational studies.23 The P-site
residue (Ala21) also appears in this list with Ile22, which is
particularly noted for its contribution to peptide recognition.20

Again, one cannot evaluate how optimized the charge distribu-
tion of a residue is by simply examining the deviation of optimized
from original charges because the sensitivity of the binding affinity
to charge variations is not uniform along the length of the polypep-
tide. A slight deviation from the optimized charge distribution can
produce a large change in binding affinity in some parts of the
polypeptide, whereas a large deviation may not produce significant
change in the other parts. A more direct quantity to look at is the
deviation between the binding affinity presented by the original
charges and that presented by the optimized charges, which can be
calculated in a way similar to sensitivity analysis.

Sensitivity Analysis and the Global Charge Optimization of
PKI-(5–24)

We found that our ability to efficiently propose enhancements to
PKI-(5–24) was sharpened by a sensitivity analysis approach to
interpreting charge optimization data. In Figure 10, we show the
��bindG values for the PKI global, fully constrained optimization.
In this case, eq. (17) was used to compute ��bindG. This measures
the extent to which the binding affinity is diminished when the
optimized charge of an atom is changed to that of the original
charge, keeping all other charges at their original values. Although
��bindG for the total ligand must necessarily be positive for the
optimized charges to result in a more favorable �bindG, the cor-
responding values when only the charges on a specific residue
were changed to the optimized ones need not be. For example, we
see that the very important Arg18 and Arg19 can be improved
substantially by optimization, but the third important basic residue,
Arg15, would actually harm binding affinity if it had the charges
proposed by global optimization while the remaining ligand had its
original charges. This is because one can only obtain a more

favorable binding affinity when all the charges are modified ac-
cording to the charge optimization. Changing only a subset of the
charges may not give more favorable binding. Because it is usually
difficult to find a real molecule that can give a charge distribution
suggested by a global optimization, a local optimization that fo-
cuses on only a part of the molecule keeping everything else fixed
may be a better strategy. Nonetheless, global optimization can give
preliminary insights into which regions may be profitably modified
to achieve better binding, as we will show later.

The global, fully constrained optimization also reveals that
Phe10, which has the lowest average deviation from its optimized
charge distribution, has a relatively low ��bindG, indicating that
the charge distribution on this residue is close to giving optimal
binding, confirming again the importance of having a hydrophobic
residue here. Figure 11 shows the average diagonal element of L
for the amino acids in PKI-(5–24). From eq. (16), we know that
this number gives some hint as to how much binding affinity is lost
if the charge distribution were not close to optimal. The residues of
PKI-(5–24) that present the highest Lkk are Phe10, Arg15, Arg18,
Arg19, Ala21, and Ile22, which are shown to be quite important in
binding.20 As discussed earlier, Phe10 already has charge distri-
bution that is close to optimal. On the other hand, it seems that the
charge distribution on Arg18 and Arg19 can be further modified to
gain significant improvement in binding, as their large ��bindG
values in Figure 10 indicate. However, as discussed earlier, local
optimization is necessary to provide more reliable predictions if
one only modifies a local charge distribution without changing the
other parts of the polypeptide.

Sensitivity Analysis and the Local Charge Optimization of
PKI-(5–24)

Figure 12 shows the average absolute deviation between the orig-
inal CHARMM27 charge distribution and the fully constrained,
optimized charge distribution of PKI-(5–24) residues where only
the side chains of PKI were optimized with respect to the remain-
ing ligand atoms which were held constant. Although all of the

Figure 10. Change in binding free energy, ��bindG from eq. (17),
produced by optimized charges obtained from the global, fully con-
strained optimization of PKI-(5–24).

Figure 11. Average diagonal element of the matrix L for each amino
acid in PKI-(5–24).

1424 Sims, Wong, and McCammon • Vol. 25, No. 11 • Journal of Computational Chemistry



remaining ligand charges were held at their original values, the
charges on a single PKI side chain were allowed to change as long
as no charge magnitude exceeded 0.85e and the net charge of the
residue remained unchanged. Figure 12 presents data that are
analogous to Figure 9 but for local optimization of PKI side chains.
The Gly14 and Gly17 side chains were omitted from this analysis
because they consist of only a single atom. Phe10, Thr6, Arg15,
Arg19, Ala21, and Ile22 are the residues with the smallest devia-
tions.

Just as in global optimization, we can consider ��bindG for
local optimization data. Figure 13 shows results that are analogous
to Figure 10 for the local charge optimization where Gly14 and
Gly17 are once again omitted. It should be noted that these
��bindG values are necessarily positive because the charges that
were modified are also those that were optimized. These data
reveal the amount of binding affinity (within this model) by which
local modification of a given, individual PKI residue can improve
the overall ligand. For example, if the charges on Arg18 match
those of its local, fully constrained optimized charge distribution
while the remaining ligand maintains its original CHARMM27
charges and the shape of Arg18 is unaltered, the free energy
change on binding PKI-(5–24) to PKA in our model would im-
prove by about 7.5 kcal/mol. It is clear from this analysis that
within this model, Arg15, Arg18, Arg19, and Tyr7 offer the best
opportunities for local modifications to yield significant, overall
improvements to binding affinity. It is interesting to see that
although previous experimental and computational studies have
shown that Arg15, Arg18, and Arg19 already contribute signifi-
cantly to binding, these residues might be modified further to gain
substantial improvement in binding affinity. Also, the small devi-
ations of their charges from the optimal ones indicate that only
small modifications of the charges on these residues are needed to
improve binding significantly.

The global charge optimization data suggested that Arg18
prefers to have higher net charge (data not shown), so we at-
tempted a second, local optimization of this side chain in which the

net charge of the residue was constrained to be �2 rather than �1.
Recalculation of ��bindG showed that a potential improvement of
about 9.7 kcal/mol was possible for Arg18 with a �2 charge as
opposed to the 7.5 kcal/mol ��bindG available to Arg18 with a �1
charge. Similarly, a ��bindG of over 6 kcal/mol was found pos-
sible for Arg19 with a �2 charge as opposed to the 4.2 kcal/mol
��bindG value when a �1 charge constraint was in place. Global
optimization data also suggested that Tyr7 could benefit from
having a lower net charge, so local optimization was recalculated
using a net charge constraint of �1 on Tyr7. A potential improve-
ment of 4.4 kcal/mol becomes available as opposed to the 2.5
kcal/mol ��bindG from the zero net charge constraint. These data
combined with the actual local and global charge distributions can
be used to propose chemical modifications to PKI-(5–24) as long
as the suggestions do not drastically alter the spatial parameters of
the ligand. A binding energy calculation using the same continu-
um-solvent model used in the charge optimization studies can then
further evaluate the effectiveness of these proposed modifications.

Designed Peptide Mimics—Suggested Modifications to
PKI-(5–24)

We propose 10 designed modifications that perturb the charge
distribution of PKI-(5–24) in accordance with our charge optimi-
zation data. We targeted Arg18, Arg19, and Tyr7 for modifica-
tions. Some of the proposed structures reflect the aforementioned
changes in net charge of the residues. The modifications and the
computed effects on their possible binding affinities are recorded
in Figure 14.

Structure 1 involves a modification to the Arg19 side chain that
requires very little change in the overall shape of the residue (and
much less when the ligand is considered in total), but presents
charges closer to the optimized ones. The hybridizations of the
atoms remain unchanged, although some radii, and of course, the
charge distribution are perturbed. However, the increase in binding
affinity is less than 2 kcal/mol within our model. Further modifi-

Figure 12. Deviations of optimized charges from their original
CHARMM27 charges for PKI-(5–24). The absolute average deviation
over atoms in each residue is shown. Results from local, fully con-
strained charge optimization of individual side chains.

Figure 13. Change in binding free energy, ��bindG from eq. (17),
produced by optimized charges obtained from the local, fully con-
strained optimization of individual side chains of PKI-(5–24).
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cation in Structure 2 involved placing two hydroxyl groups on the
beta-carbon, but even less is gained here (1.6 kcal/mol).

Placing a �1 charge on the originally neutral Tyr7 by acety-
lating the beta-carbon while removing the hydroxyl group im-
proves the computed �bindG by about 3.8 kcal/mol (Structure 3).
Similarly, when we changed the formal charge of Arg19 from �1
to �2 in accordance with the previous section by the addition of an
ammonium group and also a mercapto group, we computed an
improvement in �bindG of 6.8 kcal/mol (Structure 4). Further
perturbation by replacing one of the guanidine amines with a
methylamine while including the modifications from Structure 4
gave us an improvement in �bindG of 7.8 kcal/mol for Structure 5.

Careful analysis of local charge optimization data along with
the original quantum mechanically derived charges suggested that
the carboxyl group used in Structure 3 would be better placed on
the phenyl ring para to the amino acid backbone. In addition, the
local optimization suggested that a more electronegative atom
should be placed ortho to the amino acid backbone to polarize the
bonds at that position somewhat. A heterocyclic nitrogen was
modeled at that position to complete Structure 6, which had a
computed improvement in �bindG of about 9.4 kcal/mol. Combin-
ing the modification in Structure 6 with that in Structure 5 yielded
Structure 7, which has the same overall net charge as the wild-type

PKI-(5–24) but with a computed 15.6 kcal/mol improvement in
�bindG. We applied alterations to Arg18 that were similar to those
used in modifying Arg19 based on global and local optimization
data. The modifications in Structure 8 (adding an ammonium
group to the gamma-carbon) and Structure 9 (adding both an
ammonium group to the gamma-carbon and a chloro group to the
beta-carbon) gave computed improvements in binding affinity of
7.7 and 4.7 kcal/mol, respectively. Finally, the combination of the
modifications from Structure 6 and Structure 8 formed Structure
10. This structure, like Structure 7, has the same overall net charge
as the original polypeptide but improved the binding affinity by
16.6 kcal/mol (�87.8 kcal/mol vs. �71.2 kcal/mol).

Although the shape of the ligand needs to be modified some-
what in designing molecules that can actually be made, the gain in
binding affinity of our designed compounds are close to those
suggested by charge optimization without changing the original
ligand structure. In the designed compounds, the hydrophobic term
described in our Binding Free Energy Model may also change
somewhat. However, these changes in �GSA are relatively small
because we focused on designing peptide mimics without signif-
icantly changing the shape of the original peptide so that the results
from charge optimization with constant shape can be used more
readily. Here, we show that although the PKI fragment already has
binding affinity in the nM range, it may be feasible to improve it
further by making chemical modifications such as those shown in
Figure 14.

Charge Optimization at the Cyclin A/CDK2 Interface

A 32-amino acid (547 atom) region of the aforementioned cyclin
A fragment was designated as the interfacial region with respect to
CDK2 based on a simple distance criterion applied to the unphos-
phorylated complex crystal structure.24 We defined any amino acid
in cyclin A containing an atom within 3 Å of any CDK2 atom to
be an interfacial amino acid. We then employed global and local
charge optimization using a fixed conformation model as in study-
ing the other two systems.

During global optimization, the individual charge magnitudes
were restricted just as in all previous constrained optimizations,
and the net charge was constrained at the original value of �3e.
However, during global charge optimization, the charges on indi-
vidual residues can rearrange significantly that can still yield the
same net charge. On the other hand, in local optimization, only the
side chain atoms were considered and the net charge of each
residue was restricted to its original value of �1, 0, or 1. As
described earlier in PKA–PKI interactions, it is easier to combine
results from local optimization and chemical intuition to come up
with chemical modifications that can improve binding.

In this analysis, we will focus on a few amino acids in the
interface that exhibited interesting transitions upon optimization.
The total results of both optimization types are summarized in
three figures. Figure 15 graphs the average diagonal element of the
matrix L for each amino acid. Figures 16 and 17 show the average
absolute charge deviation and sensitivity analysis data for the
global and local optimizations, respectively.

One particularly noteworthy amino acid is Phe267, which has
the fifth highest average diagonal element of L (8.10 kcal/mol �

e2). This signifies large deviations from optimal binding affinity if

Figure 14. Structures of the modified side chains in each of our
proposed, hypothetical structures for PKI derivatives and the corre-
sponding computed binding free energy changes (for association with
PKA).
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the atomic charges on this residue are not optimized, as implied by
eq. (16). We found that this amino acid has the smallest average
absolute deviation from the local, optimized distribution, and the
seventh smallest such deviation from the global, optimized distri-
bution. More importantly, Phe267 has the lowest local ��bindG
(only 0.28 kcal/mol where the average ��bindG is 1.82 kcal/mol)
and the eighth lowest ��bindG from the global analysis (1.00
kcal/mol where the average ��bindG is 1.81 kcal/mol). These
results indicate that the charge distribution on this residue is
already rather optimized. In fact, its average charge deviation in
global optimization is far below average (by about 0.12e where
the range of average values is 0.17e–0.55e). This is consistent
with an analysis of the crystal structure, which shows that this
residue forms part of a hydrophobic pocket around the CDK2
amino acid Ile49 along with cyclin A residues Leu263, Leu299,
Leu306, and part of Lys266 (carbon chain).24 Any significant
deviation from nonpolar charges could significantly diminish bind-
ing. Thus, it will be better to leave this residue alone in search of
cyclin A mimics that can bind better to CDK2.

The original charge distribution of Phe304 appears to be com-
parable in optimality to that of Phe267. This amino acid has the
seventh highest average diagonal element of L at 7.95 kcal/mol �

e2. It also has the lowest and second lowest deviations from its
optimized distribution in the global and local optimizations, re-
spectively. The global ��bindG value for Phe304 is �1.02 kcal/
mol (seventh lowest) and 0.59 kcal/mol for the local optimization
(eighth lowest). This residue is another example of cyclin A
utilizing a hydrophobic pocket to achieve binding affinity. Both
Phe304 and Phe267 are major components of the hydrophobic
cyclin box portion of the interface that forms major buried hydro-
phobic interactions with one of CDK2’s flexible helices.24 Phe304
makes noteworthy van der Waals contacts with Ile52 on CDK2.24

Ile52 is solvent inaccessible in the free crystal structure of CDK240

but undergoes a positional change upon binding to cyclin A, which
facilitates this and other interactions.24 The optimality of these two
hydrophobically interacting phenylalanines is reminiscent of
Phe10 on PKI, which fits into an aromatic pocket on PKA and
exhibits a relatively optimized charge distribution.

The three residues that give the largest diagonal elements of L
are Asn173, Lys266, and Tyr178. These residues could lose a lot
of binding affinity if their charge distributions are far from their
optimal values. Examining the average ��bindGs from global and
local optimization shows that modifying Asn173 and Tyr178 in
such a way to yield charge distributions closer to their optimal
value could produce large gain in binding affinity. On the other
hand, it seems that Lys266 already has a charge distribution quite
close to their optimal values that no significant improvement in
binding affinity is gained when its charge distribution is set to its
optimal value. Another residue that stands out in the average
��bindG plots is Lys288. Modifying its charge distribution to its
optimal one could significantly improve binding. Thus, these cal-
culations suggest that Asn173, Tyr178, and Lys288 are three of the
residues that are worthwhile to consider modifying for a better
binder to CDK2.

The cyclin A interface appears to be comparable in optimality
to PKI-(5–24) with respect to its target receptor PKA. The average
Lii values for the two systems are very similar and range from less

Figure 15. Average diagonal element of the matrix L for each amino
acid in the Cyclin A-CDK2 interfacial region.

Figure 16. Charge deviation analysis for the global, fully constrained
optimization of the cyclin A–CDK2 interfacial region (top) and for the
local, fully constrained optimization of the side chains in the cyclin
A–CDK2 interfacial region (bottom). Absolute average deviation over
atoms in each residue is shown.
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than 1 kcal/mol � e2 to about 19 kcal/mol � e2. The average
��bindGs for the two global optimizations are also fairly close:
1.81 kcal/mol for the cyclin A interface and 1.35 kcal/mol for
PKI-(5–24). For the two local optimizations, the average ��bindG
values are 1.82 kcal/mol and 1.44 kcal/mol for the cyclin A
interface and PKI-(5–24), respectively.

Conclusions

The charge optimization approach to rational, computational drug
design appears to have great potential due to the wealth of infor-
mation that can be obtained from one calculation and its relatively
low computational cost. Despite its methodological similarity to
our earlier sensitivity analysis studies, the data presented by charge
optimization and sensitivity analysis yield different insights, and
can be profitably used together to aid molecular design. In our
previous computational design attempt with the CDK2–deschlo-

roflavopiridol system, we used sensitivity analysis to determine
which regions of the ligand lacked a significant contribution to the
electrostatic binding free energy change.9 That is, we tried to
gauge the utility of a partial charge. In the design phase that
followed, we kept regions of the ligand that are already useful in
binding and focused on improving the region that lacked utility.9

As long as the modeling space in the crystal structure allowed it,
we made significant changes to the overall ligand shape.9 In the
current charge optimization studies of the PKA–PKI-(5–24) and
CDK2–deschloroflavopiridol systems, we found that ligand re-
gions whose contributions to binding are already substantial can
still have great potential for improvement. This suggests another
strategy for inhibitor design.

As noted in this and other studies, there are numerous limita-
tions to such a continuum solvent model of binding free en-
ergy.9,23,29 In this particular case, we applied a fixed conformation
model that assumes that the ligand and receptor undergo no con-
formational change upon binding. This is a reasonable assumption
in guiding inhibitor design as long as the designed compounds are
reasonably similar to their parent compounds or peptides. As we
illustrated here and in our earlier work, chemical modifications that
do not significantly alter the conformation of the targets, and the
lead inhibitors can be designed that could significantly improve
binding.

Our analysis of the protein–protein interface between CDK2
and cyclin A, although preliminary, has already pointed out that
charge optimization can suggest which parts of the inhibitor may
be profitably modified to improve binding affinity. Despite their
already impressive optimal binding, we still found great potential
for further improving the binding affinity between these two pro-
teins.
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