848 research outputs found

    Field Tests of Some Liming Treatments for Growing Burley Tobacco on Acid Soils

    Get PDF
    A major problem in the production of tobacco on acid soils in Kentucky is manganese toxicity, despite the fact that it can be easily prevented. Since manganese toxicity is caused by high levels of soil acidity, prevention of soil acidity by liming is the best method of control. And soil testing is the only way to determine how acid a field has become

    Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex

    Get PDF
    BACKGROUND: Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. RESULTS: Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36) is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. CONCLUSION: We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure

    Embedding Innovation Process And Methodology In Engineering Technology And Business Management And Marketing Courses

    Get PDF
    For many business segments, true “out of the box” innovation occurs in entrepreneurial companies where the founders aren’t hindered with the research paradigms established by mainstream businesses. The founders of these companies, many times technologists and scientists, see the application of the technology long before potential customers develop an understanding of the capabilities that the new technology can bring to the marketplace. Many times these “new technology ideas” have been developed though modifying an existing dominant design (product or service) to meet an unforeseen market need or through the development of a new design that may become the new industry standard. The competitors of tomorrow may reside in radically different markets yet have the insight to envision the application or modification of an existing technology to a market segment that they are currently not involved in. Teaching engineering technology students techniques and visioning tactics related to the innovation process has been difficult. Several of the authors have experienced, both in the classroom and in industrial settings, that many engineering and engineering technology students see innovation as the application of engineering principals resulting in small incremental changes in a process. Although these changes may result in a more efficient process through increased productivity, reduced waste, faster cycle times, etcetera; continuous improvement projects many times do not generate the dramatic market changes seen with a new dominant design. In fact in many established industries, disruptive innovation is discouraged in favor of continuous innovation because of the uncertainty of the risk/reward quotient and the impact that failed experimentation (increased research and development costs) can have on Wall Street’s perception of a company. Our university recently merged the colleges of Business and Technology and Applied Sciences resulting in a cross-pollinated faculty and the establishment of courses in the graduate and undergraduate curriculum where business and engineering technology student’s work together on class projects, many of which involve an innovation component. It is interesting that many of the faculty who incorporate a discussion or exercise related to the innovation process in their classroom have had extensive experience in an industrial setting prior to joining the university faculty. Industry seasoned faculty bring their “real-world” experience to the classroom and challenge students to move beyond continuous improvement projects. In several cases, ideas generated in the classroom or through collaborative efforts between the business and technology faculty have resulted in prototypes being built in the laboratory for further testing of the prospective innovation. The presence of a technology-centered business incubator located within walking distance from campus provides students the opportunity to observe several high technology businesses that have developed new technology niches in established market segments. These businesses provide consulting opportunities for cross-disciplinary graduate student teams to observe the challenges of introducing a new technology to address previously met market needs through introduction of a superior product. The business incubator is further linked to a sister technology-centered business incubator in Europe providing students (graduate and undergraduate) the opportunity to evaluate if a new technology should be launched initially in the United States or Europe. The creation of these learning opportunities mimic the industrial setting where graduates will be required to operate in cross-disciplinary teams that may address global manufacturing and marketing decisions. This paper discusses the pedagogical approaches several faculty members have developed to introduce and cultivate a creative innovation process to undergraduate and graduate students enrolled in technology engineering and business marketing and management classes. These approaches include identifying unmet market niche opportunities, identifying technologies utilized in alternative markets that could be utilized for different market segments, classroom exercises to compel students to search existing patent literature, ideation and brainstorming exercises and researching business entities to identify their technology strategy and implementation plans

    'All emigrants are up to the physical, mental, and moral standards required': A tale of two child rescue schemes

    Get PDF
    The current paper critically assesses and reflects on the ideals and realities of two major (British) child migration schemes, namely the British Home Child scheme (1869–1930) and the Kindertransport scheme (1938–1940), to add to current understandings of their place within wider international histories of child migration, moral reforms, eugenics, settlement, and identity. Specifically, we focus on constructions of “mentally and physically deficient” children/young people, informed by eugenic viewpoints and biological determinism, and how this guided inclusion and exclusion decisions in both schemes. Both schemes made judgements regarding which children should be included/excluded in the schemes or returned to their country of origin (as was the case with children in the Canadian child migration scheme) fueled by a type of eugenics oriented to transplanting strong physical and psychologically resilient specimens. By viewing the realities of the child migration schemes, including the varied experiences and narratives in relation to child migrants, in light of eugenicist narratives of difference, pathology, victimhood, and contamination, we shed a light on uneven practices, formations of power, and expectations of the times

    Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses

    Get PDF
    As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of a1, a2 and a3 GABAA receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the a1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the a1 subunits at both synapses. However, the application of drugs selective for the a2, a3 and a5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-a1 subunits. Immunofluorescence revealed widespread distribution of the a1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the ?2 subunit indicated strong immunoreactivity for GABAAa3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABAAa2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABAAa subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity

    Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system

    Get PDF
    The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems

    Coaxial Flow System for Chemical Cytometry

    Get PDF
    Over the past decade, chemical cytometry performed by capillary electrophoresis (CE) has become increasingly valuable as a bio-analytical tool to quantify analytes from single cells. However, extensive use of CE-based chemical cytometry has been hindered by the relatively low throughput for the analysis of single adherent cells. In order to overcome the low throughput of CE-based analysis of adherent cells and increase its utility in evaluating cellular attributes, new higher throughput methods are needed. Integration of a coaxial buffer exchange system with CE-based chemical cytometry increased the rate of serial analyses of cells. In the designed system, fluid flow through a tube coaxial to the separation capillary was used to supply electrophoretic buffer to the capillary. This sheath or coaxial fluid was turned off between analysis of cells and on during cell sampling and electrophoresis. Thus, living cells were not exposed to the nonphysiologic electrophoretic buffer prior to lysis. Key parameters of the system such as the relative capillary-sheath positions, buffer flow velocities, and the cell chamber design were optimized. To demonstrate the utility of the system, rat basophilic leukemic cells loaded with Oregon Green and fluorescein were serially lysed and loaded into a capillary. Separation of the contents of 20 cells at a rate of 0.5 cells/min was demonstrated

    Fast-lysis cell traps for chemical cytometry

    Get PDF
    Electrically addressable cell traps were integrated with capillary electrophoresis for the analysis of the contents of single adherent cells. Electrodes composed of indium tin oxide were patterned on a glass surface followed by formation of topographical cell traps using 1002F photoresist. Single cells trapped in the holes could be lysed in less than 66 ms by applying a brief electric field (10 ms) across the electrode beneath the cell and the ground electrode placed in the aqueous media above the cell traps. The gas formed during cell lysis remained localized within the cavity formed by the 1002F photoresist. The retention of the gas in the cell trap enabled the cell traps to be coupled to an overlying capillary without blockage of the capillary. Single cells cultured in the traps were loaded with fluorescein and Oregon Green and then electrically lysed. By simultaneous application of an electric field to the capillary, the cell’s contents were loaded into the capillary and electrophoretically separated. Orgeon Green and fluorescein from a single cell were fully resolved in less than two minutes. The use of a single patterned electrode beneath the 1002F cell trap yielded a simple easily fabricated design that was robust when immersed in aqueous solutions. Moreover, the design can easily be scaled up to create arrays of adherent cells for serial analyses using a single capillary or for parallel analysis by mating to an array of capillaries. Enhancing the rate of analysis of single adherent cells would enable a greater understanding of cellular physiology
    • 

    corecore