14 research outputs found

    Six domesticated PiggyBac transposases together carry out programmed DNA elimination in .

    Get PDF
    The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In , PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in constitute a rare example of a biological process jointly managed by six distinct domesticated transposases

    Paraparesis as a Rare Complication of Dengue Fever Causing Spontaneous Spinal Subarachnoid Haemorrhage

    No full text
    A smaller number of confirmed dengue cases worldwide present with neurological symptoms such as headache, seizure, neck stiffness, drowsiness, altered sensorium, behavioural disorders, delirium, cranial nerves palsies, and rarely, spinal cord involvement. This report is about a 54-year-old female patient with dengue, who presented with acute spinal cord compression due to spontaneous spinal Subarachnoid Haemorrhage (SAH). She complained of sudden onset of febrile illness associated with headache, myalgia, retro-orbital pain, and low backache for three days, followed by sudden onset paraplegia three days after the onset of the illness. A haemogram was obtained, which showed a platelet count of 60,000/μL. She had antibodies against dengue NS1 and dengue Immunoglobulin M (IgM), but not against dengue IgG. A Magnetic Resonance Imaging (MRI) spine contrast imaging revealed a spinal SAH from the level of T12 to L1, as well as significant cord compression. An MRI of the brain revealed a SAH in the bilateral parieto-occipital region. She underwent an emergency laminectomy and complete haematoma evacuation. Postsurgical period was uneventful with complete recovery of sensation and weakness. In patients from endemic areas of dengue infection who present with fever and spinal cord involvement a high degree of suspicion of this disease should arise and it should always be investigated further for dengue-related neurological complications

    A mating-type mutagenesis screen identifies a zinc-finger protein required for specific DNA excision events in Paramecium

    Get PDF
    In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision

    Strategies for Development of Functionally Equivalent Promoters with Minimum Sequence Homology for Transgene Expression in Plants: cis-Elements in a Novel DNA Context versus Domain Swapping

    Get PDF
    The cauliflower mosaic virus 35S (35S) promoter has been extensively used for the constitutive expression of transgenes in dicotyledonous plants. The repetitive use of the same promoter is known to induce transgene inactivation due to promoter homology. As a way to circumvent this problem, we tested two different strategies for the development of synthetic promoters that are functionally equivalent but have a minimum sequence homology. Such promoters can be generated by (a) introducing known cis-elements in a novel or synthetic stretch of DNA or (b) “domain swapping,” wherein domains of one promoter can be replaced with functionally equivalent domains from other heterologous promoters. We evaluated the two strategies for promoter modifications using domain A (consisting of minimal promoter and subdomain A1) of the 35S promoter as a model. A set of modified 35S promoters were developed whose strength was compared with the 35S promoter per se using β-glucuronidase as the reporter gene. Analysis of the expression of the reporter gene in transient assay system showed that domain swapping led to a significant fall in promoter activity. In contrast, promoters developed by placing cis-elements in a novel DNA context showed levels of expression comparable with that of the 35S. Two promoter constructs Mod2A1T and Mod3A1T were then designed by placing the core sequences of minimal promoter and subdomain A1 in divergent DNA sequences. Transgenics developed in tobacco (Nicotiana tabacum) with the two constructs and with 35S as control were used to assess the promoter activity in different tissues of primary transformants. Mod2A1T and Mod3A1T were found to be active in all of the tissues tested, at levels comparable with that of 35S. Further, the expression of the Mod2A1T promoter in the seedlings of the T(1) generation was also similar to that of the 35S promoter. The present strategy opens up the possibility of creating a set of synthetic promoters with minimum sequence homology and with expression levels comparable with the wild-type prototype by modifying sequences present between cis-elements for transgene expression in plants

    Loss of a Fragile Chromosome Region leads to the Screwy Phenotype in Paramecium tetraurelia

    No full text
    International audienceA conspicuous cell-shape phenotype known as "screwy" was reported to result from mutations at two or three uncharacterized loci in the ciliate Paramecium tetraurelia. Here, we describe a new screwy mutation, Spinning Top, which appeared spontaneously in the cross of an unrelated mutant with reference strain 51. The macronuclear (MAC) genome of the Spinning Top mutant is shown to lack a ~28.5-kb segment containing 18 genes at the end of one chromosome, which appears to result from a collinear deletion in the micronuclear (MIC) genome. We tested several candidate genes from the deleted locus by dsRNA-induced silencing in wild-type cells, and identified a single gene responsible for the phenotype. This gene, named Spade, encodes a 566-aa glutamine-rich protein with a C2HC zinc finger. Its silencing leads to a fast phenotype switch during vegetative growth, but cells recover a wild-type phenotype only 5-6 divisions after silencing is stopped. We analyzed 5 independently-obtained mutant alleles of the Sc1 locus, and concluded that all of them also lack the Spade gene and a number of neighboring genes in the MAC and MIC genomes. Mapping of the MAC deletion breakpoints revealed two different positions among the 5 alleles, both of which differ from the Spinning Top breakpoint. These results suggest that this MIC chromosome region is intrinsically unstable in strain 51

    Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity

    No full text
    The cauliflower mosaic virus 35S (35S) promoter is used extensively for transgene expression in plants. The promoter has been delineated into different subdomains based on deletion analysis and gain-of-function studies. However, cis-elements important for promoter activity have been identified only in the domains B1 (as-2 element), A1 (as-1 element) and minimal promoter (TATA box). No cis-elements have been described in subdomains B2-B5, although these are reported to be important for the overall activity of the 35S promoter. We have re-evaluated the contribution of three of these subdomains, namely B5, B4 and B2, to 35S promoter activity by developing several modified promoters. The analysis of &#946;-glucuronidase gene expression driven by the modified promoters in different tissues of primary transgenic tobacco lines, as well as in seedlings of the T<SUB>1</SUB> generation, revealed new facets about the functional organization of the 35S promoter. This study suggests that: (i) the 35S promoter truncated up to -301 functions in a similar manner to the -343 (full-length) 35S promoter; (ii) the Dof core and I-box core observed in the subdomain B4 are important for 35S promoter activity; and (iii) the subdomain B2 is essential for maintaining an appropriate distance between the proximal and distal regions of the 35S promoter. These observations will aid in the development of functional synthetic 35S promoters with decreased sequence homology. Such promoters can be used to drive multiple transgenes without evoking promoter homology-based gene silencing when attempting gene stacking

    Universal trends of post-duplication evolution revealed by the genomes of 13 Paramecium species sharing an ancestral whole-genome duplication

    No full text
    Whole-Genome Duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods and the relative contributions of different selective pressures to their maintenance is still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the P. aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and one additional outgroup, allowing us to track post-WGD evolution in 13 species that share a common ancestral WGD. We found similar biases in gene retention compatible with dosage constraints playing a major role opposing post-WGD gene loss across all 13 species. Interestingly we found that post-WGD gene loss was slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium . We also report a lack of recent segmental duplications in Paramecium , which we interpret as additional evidence for strong selective pressures against individual genes dosage changes. Finally, we hope that this exceptional dataset of 13 species sharing an ancestral WGD and two closely related outgroup species will be a useful resource for future studies and will help establish Paramecium as a major model organism in the study of post-WGD evolution

    Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex

    No full text
    Abstract Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD–derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology

    Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes

    No full text
    International audienceCiliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia , genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum ). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium . The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression
    corecore