5 research outputs found

    Structure-Property Optimization of a Series of Imidazopyridines for Visceral Leishmaniasis

    Get PDF
    Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties

    Oxidative cross-coupling of boron and antimony nucleo-philes via palladium(I)

    Get PDF
    The use of an isolatable, monomeric Pd(I) complex as a catalyst for the oxidative cross-coupling of aryl- antimony and aryl-boron nucleophiles is reported. This reaction tolerates a wide variety of substrates, with >20:1 selectivity for cross-coupled products. This strategy offers a new approach to achieving the selective cross-coupling of nucleophiles
    corecore