217 research outputs found

    Diurnal activity patterns and habitat use of juvenile Pastinachus ater in a coral reef flat environment

    Get PDF
    Stingrays are thought to play important ecological roles in coral reef ecosystems. However, little is known about juvenile stingray movement patterns and habitat use in coral reefs. This study used active acoustic telemetry to determine fine-scale diel movement patterns and habitat use of juvenile cowtail stingrays (Pastinachus ater) in a coral reef flat environment. Seven cowtail stingrays (4 males and 3 females) were manually tracked between April and December 2016. Each individual was tracked over 2 days, generating a total of 14 active tracks ranging from 4.91 to 9 h. Specimens moved at an average speed of 2.44 m min-1 ± 0.87 SE, with minimum distances travelled ranging from 546 to 1446 m. Tracking data showed that juvenile cowtail stingrays move in response to tidal cycles, moving faster and in straighter pathways during incoming and outgoing tides. Juvenile cowtail stingrays also showed a strong affinity to sand flat areas and mangrove edge areas. These areas provide food resources and potential refuges for juvenile rays to avoid predators. Coral reef flats were identified as secondary refuge for juveniles during the lowest tides. Future research is necessary to fully unveil the major drivers of juvenile cowtail stingray seasonal and ontogenetic movement patterns and habitat use within coral reef flat environments. This information is important to establish a full understanding of juvenile cowtail stingray ecology, but could also improve management and conservation policies

    Elasmobranch bycatch in the demersal prawn trawl fishery in the Gulf of Papua, Papua New Guinea

    Get PDF
    The elasmobranch bycatch of the Gulf of Papua Prawn Fishery is investigated in detail for the first time. Fisheries observers collected data on the elasmobranch bycatch from a total of 403 trawl sets (1,273 hrs) in the Gulf of Papua. A total of 40 species of elasmobranchs were recorded ranging in size from a 12 cm disc width stingray to a 350 cm total length sawfish. High mortality rates were recorded (>80%), attributed to the long trawl durations (up to 4 hours). The future inclusion of bycatch reduction devices would likely reduce the number of larger elasmobranchs being caught, based on evidence from the prawn trawl fisheries of northern Australia, and is being investigated by the PNG National Fisheries Authority. Differences in catch compositions were detected across the management zones as well as between the two monsoonal seasons (SE Monsoon and NW Monsoon). Increased monitoring and additional research is required and management plans should address the elasmobranch bycatch and in particular their high mortality rate

    Elasmobranch bycatch in the demersal prawn trawl fishery in the Gulf of Papua, Papua New Guinea

    Get PDF
    The elasmobranch bycatch of the Gulf of Papua Prawn Fishery is investigated in detail for the first time. Fisheries observers collected data on the elasmobranch bycatch from a total of 403 trawl sets (1,273 hrs) in the Gulf of Papua. A total of 40 species of elasmobranchs were recorded ranging in size from a 12 cm disc width stingray to a 350 cm total length sawfish. High mortality rates were recorded (>80%), attributed to the long trawl durations (up to 4 hours). The future inclusion of bycatch reduction devices would likely reduce the number of larger elasmobranchs being caught, based on evidence from the prawn trawl fisheries of northern Australia, and is being investigated by the PNG National Fisheries Authority. Differences in catch compositions were detected across the management zones as well as between the two monsoonal seasons (SE Monsoon and NW Monsoon). Increased monitoring and additional research is required and management plans should address the elasmobranch bycatch and in particular their high mortality rate

    Structure and permeability of the egg capsule of the placental Australian sharpnose shark, Rhizoprionodon taylori

    Get PDF
    Shark placentae are derived from modifications to the fetal yolk sac and the maternal uterine mucosa. In almost all placental sharks, embryonic development occurs in an egg capsule that remains intact for the entire pregnancy, separating the fetal tissues from the maternal tissues at the placental interface. Here, we investigate the structure and permeability of the egg capsules that surround developing embryos of the placental Australian sharpnose shark (Rhizoprionodon taylori) during late pregnancy. The egg capsule is an acellular fibrous structure that is 0.42 ± 0.04 μm thick at the placental interface between the yolk sac and uterine tissues, and 0.67 ± 0.08 μm thick in the paraplacental regions. This is the thinnest egg capsule of any placental shark measured so far, which may increase the diffusion rate of respiratory gases, fetal wastes, water and nutrients between maternal and fetal tissues. Molecules smaller than or equal to ~ 1000 Da can diffuse through the egg capsule, but larger proteins (~ 3000–26,000 Da) cannot. Similar permeability characteristics between the egg capsule of R. taylori and other placental sharks suggest that molecular size is an important determinant of the molecules that can be exchanged between the mother and her embryos during pregnancy

    Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta

    Get PDF
    The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage

    Scaly Whipray Brevitrygon walga

    Get PDF
    The Scaly Whipray (Brevitrygon walga) is a very small (to 32 cm disc width) whipray species whose true range is poorly-known due to taxonomic issues. There are various forms across its range (Red Sea to India), but until taxonomy is resolved, the forms in the Arabian Seas region are treated as a single species for the current assessment. This species appears to be very common in waters less than 40 m deep, including in intertidal areas. Given its size it is likely to have a productive life history, but this needs to be confirmed with species-specific research. It is regularly caught in shallow water trawls and is normally discarded at sea in the western part of its range, but landed in considerable numbers in the eastern part (i.e., India). Overall, fishing pressure is increasing across its habitat, and declines in batoids have been documented in India. At one landing site, catches have been stable over a 15 year period after an initial increase. However, over that same time period, trawl effort doubled. Overall, declines of < 30% are suspected over the last three generations (~33 years), and with ongoing fishing pressure, further population declines are suspected over the next three generations (2017-2050); the species is therefore assessed as Near Threatened (nearly meeting VU A2d+3d)

    Structural changes to the uterus of the dwarf ornate wobbegong shark (Orectolobus ornatus) during pregnancy

    Get PDF
    Embryos of the viviparous dwarf ornate wobbegong shark (Orectolobus ornatus) develop without a placenta, unattached to the uterine wall of their mother. Here, we present the first light microscopy study of the uterus of O. ornatus throughout pregnancy. At the beginning of pregnancy, the uterine luminal epithelium and underlying connective tissue become folded to form uterine ridges. By mid to late pregnancy, the luminal surface is extensively folded and long luminal uterine villi are abundant. Compared to the nonpregnant uterus, uterine vasculature is increased during pregnancy. Additionally, as pregnancy progresses the uterine epithelium is attenuated so that there is minimal uterine tissue separating large maternal blood vessels from the fluid that surrounds developing embryos. We conclude that the uterus of O. ornatus undergoes an extensive morphological transformation during pregnancy. These uterine modifications likely support developing embryos via embryonic respiratory gas exchange, waste removal, water balance, and mineral transfer

    Shark depredation: future directions in research and management

    Get PDF
    Shark depredation is a complex social-ecological issue that affects a range of fisheries worldwide. Increasing concern about the impacts of shark depredation, and how it intersects with the broader context of fisheries management, has driven recent research in this area, especially in Australia and the United States. This review synthesises these recent advances and provides strategic guidance for researchers aiming to characterise the occurrence of depredation, identify the shark species responsible, and test deterrent and management approaches to reduce its impacts. Specifically, the review covers the application of social science approaches, as well as advances in video camera and genetic methods for identifying depredating species. The practicalities and considerations for testing magnetic, electrical, and acoustic deterrent devices are discussed in light of recent research. Key concepts for the management of shark depredation are reviewed, with recommendations made to guide future research and policy development. Specific management responses to address shark depredation are lacking, and this review emphasizes that a “silver bullet” approach for mitigating depredation does not yet exist. Rather, future efforts to manage shark depredation must rely on a diverse range of integrated approaches involving those in the fishery (fishers, scientists and fishery managers), social scientists, educators, and other stakeholders
    corecore