64 research outputs found

    Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII

    Get PDF
    Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications

    TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis

    Get PDF
    Translocator protein 18 kDa (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, cell survival and proliferation. Its expression in central nervous system, mainly in glial cells, has been found to be upregulated in neuropathology, and brain injury. In this study, we investigated the anti-oxidative and anti-inflammatory effects of a group of TSPO ligands from the N,N-dialkyl-2-phenylindol-3-ylglyoxylamide class (PIGAs), highlighting the involvement of neurosteroids in their pharmacological effects. To this aim we used a well-known in vitro model of neurosteroidogenesis: the astrocytic C6 glioma cell line, where TSPO expression and localization, as well as cell response to TSPO ligand treatment, have been established. All PIGAs reduced l-buthionine-(S,R)-sulfoximine (BSO)-driven cell cytotoxicity and lipid peroxidation. Moreover, an anti-inflammatory effect was observed due to the reduction of inducible nitric oxide synthase and cyclooxygenase-2 induction in LPS/IFNÎł challenged cells. Both effects were blunted by aminoglutethimide (AMG), an inhibitor of pregnenolone synthesis, suggesting neurosteroids' involvement in PIGA protective mechanism. Finally, pregnenolone evaluation in PIGA exposed cells revealed an increase in its synthesis, which was prevented by AMG pre-treatment. These findings indicate that these TSPO ligands reduce oxidative stress and pro-inflammatory enzymes in glial cells through the de novo synthesis of neurosteroids, suggesting that these compounds could be potential new therapeutic tools for the treatment of inflammatory-based neuropathologies with beneficial effects possibly comparable to steroids, but potentially avoiding the negative side effects of long-term therapies with steroid hormones

    New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors

    Get PDF
    Inhibition of angiogenesis via blocking vascular endothelial growth factor receptor (VEGFR) signaling pathway emerged as an established approach in anticancer therapy. So far, many monoclonal antibodies and ATP-competitive small molecule inhibitors have been clinically validated and approved. In this study, structure-activity relationships (SAR) within the 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidine class of kinase inhibitors were further refined by the synthesis and biological evaluation of new compounds 1â\u80\u9321 featuring different substitution patterns on the pendant phenyl moiety, combined with H, OCH3, or Cl at 8-position. Most compounds showed a promising human kinase insert domain receptor (KDR) inhibition profile, with IC50values in the submicromolar/low nanomolar range, and promising antiproliferative activity on human umbilical vein endothelial cells (HUVECs) as well as on a panel of three human tumor cell lines. The angio-kinase selectivity profile was assessed for the most promising compound 16 against a set of six human kinases. Finally, computational studies allowed clarifying at molecular level the interaction pattern established by the compounds with KDR, highlighting key stable cation-Ï\u80 interactions, and thus providing the basis for further designing novel inhibitors

    1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions

    Get PDF
    Three novel series of 1,2-benzisothiazole derivatives have been developed as inhibitors of carbonic anhydrase isoform IX. Compounds 5c and 5j, tested in vitro on the human colon cell line HT-29, blocked the growth of cells cultured under chemically induced hypoxic conditions, displaying a specific activity against cancer cells characterized by CAIX up-regulation. Moreover, a synergistic activity of 5c with SN-38 (the active metabolite of irinotecan) and 5-fluorouracil on cell proliferation under hypoxic conditions was demonstrated

    FACILE SYNTHESIS OF 3-SUBSTITUTED[1,2,4]TRIAZINO[3,4-F]PURINE-4,6,8-TRIONE DERIVATIVES

    No full text
    A new synthetic route to build the [1,2,4]triazino[3,4-f]purine nucleus is described. The novel [1,2,4]triazino[3,4-f]purine-4,6,8(1H,7H,9H)-trione derivatives were obtained by condensation of 8-hydrazinotheophylline with appropriate glyoxylic acids via the intermediate hydrazones

    Medicinal chemistry of indolylglyoxylamide TSPO high affinity ligands with anxiolytic-like effects

    No full text
    The mitochondrial translocator protein (TSPO) mediates the synthesis of neurosteroids in the CNS, which have been demonstrated to enhance the neurotransmitter GABA response, exhibiting related behavioural properties. Selective TSPO ligands are able to stimulate steroidogenesis with great efficacy, thus representing potential anxiolytic agents. This review describes the development of a class of high affinity ligands to TSPO, N,N-dialkylindol-3-ylglyoxylamides (IGA), from the initial stages of design to the pharmacological characterization of selected compounds for their anxiolytic activity. Affinity data and SARs of the new class of ligands are discussed; the potential applications of compounds characterized by the indolylglyoxylyl scaffold in diagnostic imaging are also pointed out

    Medicinal chemistry of indolylglyoxylamide GABAA/BzR high affinity ligands: identification of novel anxiolytic/non sedative agents

    No full text
    The classical benzodiazepines (Bz) constitute a well-known class of therapeutics displaying hypnotic, anxiolytic and anticonvulsant effects acting upon a specific binding site (BzR) belonging to the GABA A receptor complex. Their usefulness, however, is limited by a broad range of side effects; consequently the fact that the action of GABA with the receptor complex could be allosterically modulated by a wide variety of chemical entities, made the Bz binding site, from late eighties to nowdays, the target of extensive research programmes directed to the identification of new ligands displaying varying degrees of affinity- and efficacy-selectivity for the different GABA A/BzR-subtypes. The principal aim has been to discover ideal sedative-hypnotic agents (selective α 1agonists), anxiolytic agents (selective α 2/α 3 agonists), or cognitive enhancers (selective α 5 inverse agonists). In this connection, an important contribution in the field of GABA A/BzR ligands was made by the research group directed by Professor Antonio Da Settimo at the University of Pisa. The purpose of this review is therefore to describe the studies, performed from early '80s, on the several classes of BzR ligands developed featuring the indol-3-ylglyoxyl scaffold. All the compounds reported have been summarized on the basis of their main chemical structural features, focusing attention on their SARs, which determined the affinity profiles or efficacy-selectivity. Moreover, the biological studies performed within each class of compounds allowed the identification of new derivatives exhibiting an anxiolytic/nonsedative profile, either in vitro (full α 2 agonism and α 1partial agonism/ antagonism) and in vivo (anxiolytic/nonsedative activity in mice)

    Recent Advances in the Development of Dual Topoisomerase I and II Inhibitors as Anticancer Drugs

    No full text
    DNA topoisomerases (topos) are essential enzymes that regulate the topological state of DNA during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Topoisomerase I (Topo I) is a ubiquitous nuclear enzyme which catalyzes the relaxation of superhelical DNA generating a transient single strand nick in the duplex, through cycles of cleavage and religation. Topoisomerase II (Topo II) mediates the ATP-dependent induction of coordinated nicks in both strands of the DNA duplex, followed by crossing of another double strand DNA through the transiently broken duplex. Although the biological functions of Topoisomerases are important for ensuing genomic integrity, the ability to interfere with enzymes or generate enzyme-mediated damage is an effective strategy for cancer therapy and, in this connection, DNA topos (I and II) proved to be the excellent targets of clinically significant classes of anticancer drugs. Actually, specific Topo I and Topo II inhibitors reversibly trap the enzyme-DNA complexes, thus converting topos into physiological poisons, able to produce permanent DNA damage, which triggers cell death. Given that both enzymes are good targets, it would be desirable to jointly inhibit them, but use-limiting toxicity of sequential or simultaneous combinations of Topo I and II poisons include severe to life-threatening neutropenia and anemia. Furthermore, the emergence of resistance phenomena to Topo I inhibitors is often accompanied by a concomitant rise in the level of Topo II expression and viceversa, leading to the failure of clinical therapies. In this regard, a single compound able to inhibit both Topo I and II may present the advantage of improving antitopoisomerase activity, with reduced toxic side effects, with respect to the combination of two inhibitors. Due to the high interest in such compounds, this review represents an update of previous works dealing with the development of dual Topo I and II inhibitors as novel anti-cancer agents. The newly collected derivatives have been described focusing attention on their chemical structures and their biological profile
    • …
    corecore