2,268 research outputs found

    KINETICS AND ELECTROMYOGRAPHY OF THE MARTIAL ARTS HIGH FRONT KICK

    Get PDF
    INTRODUCTION Fast unloaded movements like striking, throwing and kicking are typically performed in a proximo-distal sequence: Initially proximal segments accelerate while distal segments lag behind, then proximal segments deceler- ate while distal segments accelerate. In kicking, for instance, it is observed that the movement starts with forward angular acceleration of the thigh while the shank lags behind. Then the thigh decelerates while simultaneously the shank accelerates and the foot reaches its maximal velocity. This raises two questions: Is the thigh actively decelerated by the glutei and/or hamstring muscles, or passively decelerated by joint reaction forces from the accelerating shank7 Is acceleration of the shank enhanced by the thigh's deceleration? From a kinematic perspective this movement coordination seems disadvantageous, considering that the resulting linear velocity of the foot relative to the ground equals the vector sum of the resulting linear velocity of the knee relative to the ground and the foot relative to the knee. However, from a kinetic perspective it can be argued that thigh deceleration enhances shah acceleration to a degree where toss of knee velocity is more than accounted for in gain of foot velocity. The theory is that the angularly decelerating thigh exerts a knee joint force which causes angular acceleration of the shank, i.e. a %hip-lash" action. To obtain knowledge regarding how these kinds of movements are performed we decided to examine the martial arts high front kick. Similar to previous kicking studies we did so by kinematic measurements but in addition recorded the electrical activity of selected muscles in order to asses their temporal activation during the kick. METHODS Seventeen skilled taekwondo practitioners (14 males. 3 females) volunteered to take part in this study. Each subject performed three high front kicks aiming at a tennis ball suspended from the ceiling and adjusted to chin level. The fastest kick from each subject was selected for further analysis. The subjects were high speed filmed (200 f.p.s.) from their right side while kicking. Contrasting markers on selected anatomical landmarks enabled subsequent automatic digitisation. Displacement data were lowpass filtered with optimal cut-off frequencies (6-1 0 Hz) determined by use of residual analysis/ Jackson Knee method. Velocities and accelerations were derived from the displacement data by finite difference calculation. During kicking the electtomyographic activity (EMG) from five selected leg muscles were measured with surface electrodes. Kinetic data were obtained through inverse dynamics calculation using a two-segment link-segment model of the kicking leg and the movement equations developed by Putnam (1983). These equations enable division of the resulting moment acting on a segment into muscular components and motion de- pendant components arising from movement of adjacent segments. RESULTS Data for the thigh indicated that deceleration was caused by motion dependant moments arising from shank motion and not by active hip extensor muscles. Shank acceleration was caused partly by a knee extensor muscle moment and partly by a motion dependant moment arising from thigh angular velocity. Both thigh and shank kinetics were supported by EMG recordings. CONCLUSION As part of the accelerating moment acting on the shank was due to thigh angular velocity we suggest that the observed thigh deceleration should be considered unwanted but unavoidable due to shank acceleration. This implies that even though knee extensor muscles are important for shank acceleration the hip flexor muscles must not be neglected

    JUMPING STRATEGIES IN A VOLLEYBALL AND A BALLET SPECIFIC JUMP

    Get PDF
    INTRODUCTION The performance of a maximal vertical jump fram a static preparatory position (SQJ) or starting with a counter movement (CMJ) implies transformation of rotation about the hip, knee and ankle joints to a maximal translatory movement. Different strategies have been proposed for this transformation. Previously both sequential and simullaneous strategies have been proposed as optimal for maximal vertical jumping (1 & 2). The purpose of this study was to analyze ]umping strategies in a sport and dance specific maximal vertical jump. The hypothesis was that the technical demands of the Jumps would preset the strategy. Six male subjects participated in the study three professional ballet dancers and three elite volleyball players. In the ballet specific jump (BSJ) the legs were outward rotated, one foot was placed in front of and close to the other foot and the upper body kept upright. Three elite volleyball players performed the jump used for the smash (VSJ) including a three step preliminary run up and a farcefull arm swing. Afterwards all six subjects performed SQJ and CMJ. The ]umps were recorded on high speed film (500Hz) combined with registrations trom an AMTI force platform and EMG recordings from the major lower extremity muscles Net joint moments and joint work ware calculated by inverse dynamics. The strategy of the jumps was determined on the basis of angular kinematics and the pattern of nel joint moments of the two dominant joints RESULTS For BSJ the jumping height (h) was 0.22O.28m.The war!< contribution from the knee and ankle joint were 50-70% and 47-63% of the total work respectively while the work at the hip joint showed a negative contribution of 13-17% caused by a net hip flexor moment. Because of the specific ballet position the hip extension took place in the frontal plane and mgluteus maximus could not contribute to the extension. The concentric activity in mrectus femoris could partly explain the hip flexor moment. The knee and ankle joint initiated the extension phase simultaneously and the net joint moments peaked also simultaneously Therefore, the strategy could be defined as simultaneous. For VSJ h was 0.310.45m. The work contribution fram the knee and hip joints were 22-60% and 35-62% of the total work respectively. The hip joint began the extension phase before the body center of mass had reached its lowest position (sn The knee extension began 40-100ms after s.j. The peaks of the net joint moments of the hip and knee showed a similar pattern. Accordingly, the strategy could be defined as sequentiaL The sequential joint extension could partly be explained by the forcefull armswing pressing down and giving negative momentum in the downward phase and by this delaying the knee extension. In SQJ and CMJ h was 0.22-0.36m and 0.33-0AOm. The work contribution from the knee was 64.5%(SE 5.9) and 76.0% (SE 9.2) and from the hip 18.8% (SE 5.8) and 133% (SE 8.7). One ballet dancer and one volleyball player performed SQJ and CMJ with a simultaneous strategy while the otller four subjects used a sequential strategy. CONCLUSION In a maximal vertical jump fram ballet and from volleyball the technical demands preset the jumping strategy. When the subjects were asked to perform SQJ and CMJ the choice of strategy seemed individual and not connected to the training background. REFERENCES (1) Hudson, J.L. (1986). Med Sci. Sports Exerc, 18,242-251 (2) Babbert, M.F. & van lngen Schenau, G.J. (1986). J Biomechanics, 21, 249•26

    The Case for an Accelerating Universe from Supernovae

    Get PDF
    The unexpected faintness of high-redshift Type Ia supernovae (SNe Ia), as measured by two teams, has been interpreted as evidence that the expansion of the Universe is accelerating. We review the current challenges to this interpretation and seek to answer whether the cosmological implications are compelling. We discuss future observations of SNe Ia which could offer extraordinary evidence to test acceleration.Comment: To appear as an Invited Review for PASP 20 pages, 13 figure

    Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21

    Get PDF
    OBJECTIVE—Fibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) –dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPAR, might modify FGF-21 levels. RESEARCH DESIGN AND METHODS—The effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPAR activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks. RESULTS—Oleate and linoleate increased FGF-21 expression and secretion in a PPAR-dependent fashion, as demonstrated by small-interfering RNA–induced PPAR knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect. CONCLUSIONS—The results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity

    Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

    Get PDF
    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure

    Enzyme prodrug therapy achieves site-specific, personalized physiological responses to the locally produced nitric oxide

    Get PDF
    Nitric oxide (NO) is a highly potent but short-lived endogenous radical with a wide spectrum of physiological activities. In this work, we developed an enzymatic approach to the site-specific synthesis of NO mediated by biocatalytic surface coatings. Multilayered polyelectrolyte films were optimized as host compartments for the immobilized β-galactosidase (β-Gal) enzyme through a screen of eight polycations and eight polyanions. The lead composition was used to achieve localized production of NO through the addition of β-Gal–NONOate, a prodrug that releases NO following enzymatic bioconversion. The resulting coatings afforded physiologically relevant flux of NO matching that of the healthy human endothelium. The antiproliferative effect due to the synthesized NO in cell culture was site-specific: within a multiwell dish with freely shared media and nutrients, a 10-fold inhibition of cell growth was achieved on top of the biocatalytic coatings compared to the immediately adjacent enzyme-free microwells. The physiological effect of NO produced via the enzyme prodrug therapy was validated ex vivo in isolated arteries through the measurement of vasodilation. Biocatalytic coatings were deposited on wires produced using alloys used in clinical practice and successfully mediated a NONOate concentration-dependent vasodilation in the small arteries of rats. The results of this study present an exciting opportunity to manufacture implantable biomaterials with physiological responses controlled to the desired level for personalized treatment
    corecore