128 research outputs found

    Cooperative Dynamics of an Artificial Stochastic Resonant System

    Full text link
    We have investigated cooperative dynamics of an artificial stochastic resonant system, which is a recurrent ring connection of neuron-like signal transducers (NST) based on stochastic resonance (SR), using electronic circuit experiments. The ring showed quasi-periodic, tunable oscillation driven by only noise. An oscillation coherently amplified by noise demonstrated that SR may lead to unusual oscillation features. Furthermore, we found that the ring showed synchronized oscillation in a chain network composed of multiple rings. Our results suggest that basic functions (oscillation and synchronization) that may be used in the central pattern generator of biological system are induced by collective integration of the NST element.Comment: 13 pages, 4 figure

    GABAB receptor-mediated, layer-specific synaptic plasticity reorganizes gamma-frequency neocortical response to stimulation

    Get PDF
    Repeated presentations of sensory stimuli generate transient gamma-frequency (30-80 Hz) responses in neocortex that show plasticity in a task-dependent manner. Complex relationships between individual neuronal outputs and the mean, local field potential (population activity) accompany these changes, but little is known about the underlying mechanisms responsible. Here we show that transient stimulation of input layer 4 sufficient to generate gamma oscillations induced two different, lamina-specific plastic processes that correlated with lamina-specific changes in responses to further, repeated stimulation: Unit rates and recruitment showed overall enhancement in supragranular layers and suppression in infragranular layers associated with excitatory or inhibitory synaptic potentiation onto principal cells, respectively. Both synaptic processes were critically dependent on activation of GABAB receptors and, together, appeared to temporally segregate the cortical representation. These data suggest that adaptation to repetitive sensory input dramatically alters the spatiotemporal properties of the neocortical response in a manner that may both refine and minimize cortical output simultaneously

    Balance and coordination after viewing stereoscopic 3D television.

    Get PDF
    Manufacturers and the media have raised the possibility that viewing stereoscopic 3D television (S3D TV) may cause temporary disruption to balance and visuomotor coordination. We looked for evidence of such effects in a laboratory-based study. Four hundred and thirty-three people aged 4-82 years old carried out tests of balance and coordination before and after viewing an 80 min movie in either conventional 2D or stereoscopic 3D, while wearing two triaxial accelerometers. Accelerometry produced little evidence of any change in body motion associated with S3D TV. We found no evidence that viewing the movie in S3D causes a detectable impairment in balance or in visuomotor coordination

    Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology

    Get PDF
    This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).
&#xa
    corecore