869 research outputs found
Le sentiment de puissance. Une approche anthropologique du fait religieux
The aim of this paper is to explain the critical analysis of religion that Nietzsche sets up in relation to his concept of the feeling of power. Faith can help human beings feel powerful even when they are not, although it can also provide them with some kind of effective power. The feeling of power can therefore be used as a tool to better understand various religious attitudes and practices.
 El objetivo de este artÃculo es explicar el análisis crÃtico de la religión que Nietzsche realiza gracias a su concepto de sentimiento de poder. Por un lado, la fe puede ayudar a los seres humanos a sentirse poderosos, aunque no necesariamente sean, por otro lado, ese proceso puede proporcionarles algún tipo de poder efectivo. El sentimiento de poder es, por tanto, una herramienta para comprender mejor numerosas actitudes y prácticas religiosas
Coulomb interaction effects on the electronic structure of radial polarized excitons in nanorings
The electronic structure of radially polarized excitons in structured
nanorings is analyzed, with emphasis in the ground-state properties and their
dependence under applied magnetic fields perpendicular to the ring plane. The
electron-hole Coulomb attraction has been treated rigorously, through numerical
diagonalization of the full exciton Hamiltonian in the non-interacting
electron-hole pairs basis. Depending on the relative weight of the kinetic
energy and Coulomb contributions, the ground-state of polarized excitons has
"extended" or "localized" features. In the first case, corresponding to small
rings dominated by the kinetic energy, the ground-state shows Aharonov-Bohm
(AB) oscillations due to the individual orbits of the building particles of the
exciton. In the localized regime, corresponding to large rings dominated by the
Coulomb interaction, the only remaining AB oscillations are due to the magnetic
flux trapped between the electron and hole orbits. This dependence of the
exciton, a neutral excitation, on the flux difference confirms this feature as
a signature of Coulomb dominated polarized excitons. Analytical approximations
are provided in both regimens, which accurate reproduce the numerical results.Comment: 9 pages, including 6 figure
Recommended from our members
Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics
With the development of convection-permitting numerical weather prediction the efficient use of high-resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Doppler radar radial winds (DRWs), is now common, though to avoid violating the assumption of uncorrelated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast requires the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the DRWs that are assimilated into the Met Office high-resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam observation error statistics. The new results obtained show that the DRW error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length-scales are longer than the operational thinning distance. They are dependent both on the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the background error covariance matrix used in the assimilation, although they are, in part, a result of using superobservations and a simplified observation operator. The inclusion of correlated error statistics in the assimilation allows less thinning of the data and hence better use of the high-resolution observations
Current-voltage characteristics of diluted Josephson-junction arrays: scaling behavior at current and percolation threshold
Dynamical simulations and scaling arguments are used to study the
current-voltage (IV) characteristics of a two-dimensional model of resistively
shunted Josephson-junction arrays in presence of percolative disorder, at zero
external field. Two different limits of the Josephson-coupling concentration
are considered, where is the percolation threshold. For
and zero temperature, the IV curves show power-law behavior above a disorder
dependent critical current. The power-law behavior and critical exponents are
consistent with a simple scaling analysis. At and finite temperature ,
the results show the scaling behavior of a T=0 superconducting transition. The
resistance is linear but vanishes for decreasing with an apparent
exponential behavior. Crossover to non-linearity appears at currents
proportional to , with a thermal-correlation length exponent
consistent with the corresponding value for the diluted XY model at
.Comment: Revtex, 9 postscript pages, to appear in Phys. Rev.
The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling
We investigate the effect that Rashba spin-orbit coupling has on the low
energy behaviour of a two dimensional magnetic impurity system. It is shown
that the Kondo effect, the screening of the magnetic impurity at temperatures T
< T_K, is robust against such spin-orbit coupling, despite the fact that the
spin of the conduction electrons is no longer a conserved quantity. A proposal
is made for how the spin-orbit coupling may change the value of the Kondo
temperature T_K in such systems and the prospects of measuring this change are
discussed. We conclude that many of the assumptions made in our analysis
invalidate our results as applied to recent experiments in semi-conductor
quantum dots but may apply to measurements made with magnetic atoms placed on
metallic surfaces.Comment: 22 pages, 1 figure; reference update
- …