17 research outputs found
Statin therapy inhibits remyelination in the central nervous system
Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2(strong) and Nkx2.2(strong) OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2(strong) OPCs and an increase in Olig2(strong) cells, suggesting that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes
Neutrophils that infiltrate the central nervous system regulate T cell responses.
Abstract
Regulation of inflammatory responses is critical to progression of organ-specific autoimmune disease. Although many candidate cell types have been identified, immunoregulatory activity has rarely been directly assayed and never from the CNS. We have analyzed the regulatory capability of Gr-1high neutrophils isolated from the CNS of mice with experimental autoimmune encephalomyelitis. Proportions of neutrophils were markedly increased in the CNS of IFN-γ-deficient mice. Strikingly, CNS-derived neutrophils, whether or not they derived from IFN-γ-deficient mice, were potent suppressors of T cell responses to myelin or adjuvant Ags. Neutrophil suppressor activity was absolutely dependent on IFN-γ production by target T cells, and suppression was abrogated by blocking NO synthase. These data identify an immunoregulatory capacity for neutrophils, and indicate that interplay between IFN-γ, NO, and activated Gr-1high neutrophils within the target organ determines the outcome of inflammatory and potentially autoimmune T cell responses.</jats:p