13,125 research outputs found

    Optimal control technique for Many Body Quantum Systems dynamics

    Full text link
    We present an efficient strategy for controlling a vast range of non-integrable quantum many body one-dimensional systems that can be merged with state-of-the-art tensor network simulation methods like the density Matrix Renormalization Group. To demonstrate its potential, we employ it to solve a major issue in current optical-lattice physics with ultra-cold atoms: we show how to reduce by about two orders of magnitudes the time needed to bring a superfluid gas into a Mott insulator state, while suppressing defects by more than one order of magnitude as compared to current experiments [1]. Finally, we show that the optimal pulse is robust against atom number fluctuations.Comment: 5 pages, 4 figures, published versio

    Infinite index extensions of local nets and defects

    Get PDF
    Subfactor theory provides a tool to analyze and construct extensions of Quantum Field Theories, once the latter are formulated as local nets of von Neumann algebras. We generalize some of the results of [LR95] to the case of extensions with infinite Jones index. This case naturally arises in physics, the canonical examples are given by global gauge theories with respect to a compact (non-finite) group of internal symmetries. Building on the works of Izumi, Longo, Popa [ILP98] and Fidaleo, Isola [FI99], we consider generalized Q-systems (of intertwiners) for a semidiscrete inclusion of properly infinite von Neumann algebras, which generalize ordinary Q-systems introduced by Longo [Lon94] to the infinite index case. We characterize inclusions which admit generalized Q-systems of intertwiners and define a braided product among the latter, hence we construct examples of QFTs with defects (phase boundaries) of infinite index, extending the family of boundaries in the grasp of [BKLR16].Comment: 50 page

    First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment

    Get PDF
    In this paper we investigate by means of first-principles density functional theory calculations the (111) surface of the Ag-Cu alloy under varying conditions of pressure of the surrounding oxygen atmosphere and temperature. This alloy has been recently proposed as a catalyst with improved selectivity for ethylene epoxidation with respect to pure silver, the catalyst commonly used in industrial applications. Here we show that the presence of oxygen leads to copper segregation to the surface. Considering the surface free energy as a function of the surface composition, we construct the convex hull to investigate the stability of various surface structures. By including the dependence of the free surface energy on the oxygen chemical potential, we are able compute the phase diagram of the alloy as a function of temperature, pressure and surface composition. We find that, at temperature and pressure typically used in ethylene epoxidation, a number of structures can be present on the surface of the alloy, including clean Ag(111), thin layers of copper oxide and thick oxide-like structures. These results are consistent with, and help explain, recent experimental results.Comment: 10 pages, 6 figure

    Charge order at the frontier between the molecular and solid states in Ba3NaRu2O9

    Get PDF
    We show that the valence electrons of Ba3NaRu2O9, which has a quasi-molecular structure, completely crystallize below 210 K. Using an extended Hubbard model, we show that the charge ordering instability results from long-range Coulomb interactions. However, orbital ordering, metal-metal bonding and formation of a partial spin gap enforce the magnitude of the charge separation. The striped charge order and frustrated hcp lattice of Ru2O9 dimers lead to competition with a quasi-degenerate charge-melted phase under photo-excitation at low temperature. Our results establish a broad class of simple metal oxides as models for emergent phenomena at the border between the molecular and solid states.Comment: Minor changes, with supporting information. To appear in Phys. Rev. Let

    Chopped random-basis quantum optimization

    Get PDF
    In this work we describe in detail the "Chopped RAndom Basis" (CRAB) optimal control technique recently introduced to optimize t-DMRG simulations [arXiv:1003.3750]. Here we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.Comment: 9 pages, 10 figure

    Highly indistinguishable single photons from incoherently and coherently excited GaAs quantum dots

    Full text link
    Semiconductor quantum dots are converging towards the demanding requirements of photonic quantum technologies. Among different systems, quantum dots with dimensions exceeding the free-exciton Bohr radius are appealing because of their high oscillator strengths. While this property has received much attention in the context of cavity quantum electrodynamics, little is known about the degree of indistinguishability of single photons consecutively emitted by such dots and on the proper excitation schemes to achieve high indistinguishability. A prominent example is represented by GaAs quantum dots obtained by local droplet etching, which recently outperformed other systems as triggered sources of entangled photon pairs. On these dots, we compare different single-photon excitation mechanisms, and we find (i) a "phonon bottleneck" and poor indistinguishability for conventional excitation via excited states and (ii) photon indistinguishablilities above 90% for both strictly resonant and for incoherent acoustic- and optical-phonon-assisted excitation. Among the excitation schemes, optical phonon-assisted excitation enables straightforward laser rejection without a compromise on the source brightness together with a high photon indistinguishability

    Stop-and-go kinetics in amyloid fibrillation

    Get PDF
    Many human diseases are associated with protein aggregation and fibrillation. Using glucagon as a model system for protein fibrillation we show that fibrils grow in an intermittent fashion, with periods of growth followed by long pauses. Remarkably, even if the intrinsic transition rates vary considerably in each experiment, the probability of being in the growing (stopping) state is very close to 1/4 (3/4), suggesting the presence of 4 independent conformations of the fibril tip. We discuss this possibility in terms of existing structural knowledge

    Using network-flow techniques to solve an optimization problem from surface-physics

    Full text link
    The solid-on-solid model provides a commonly used framework for the description of surfaces. In the last years it has been extended in order to investigate the effect of defects in the bulk on the roughness of the surface. The determination of the ground state of this model leads to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation problem. We will show that the successive shortest path algorithm solves the problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included

    The critical exponents of the two-dimensional Ising spin glass revisited: Exact Ground State Calculations and Monte Carlo Simulations

    Get PDF
    The critical exponents for T→0T\to0 of the two-dimensional Ising spin glass model with Gaussian couplings are determined with the help of exact ground states for system sizes up to L=50L=50 and by a Monte Carlo study of a pseudo-ferromagnetic order parameter. We obtain: for the stiffness exponent y(=θ)=−0.281±0.002y(=\theta)=-0.281\pm0.002, for the magnetic exponent δ=1.48±0.01\delta=1.48 \pm 0.01 and for the chaos exponent ζ=1.05±0.05\zeta=1.05\pm0.05. From Monte Carlo simulations we get the thermal exponent ν=3.6±0.2\nu=3.6\pm0.2. The scaling prediction y=−1/νy=-1/\nu is fulfilled within the error bars, whereas there is a disagreement with the relation y=1−δy=1-\delta.Comment: 8 pages RevTeX, 7 eps-figures include
    • …
    corecore