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The critical exponents for T ! 0 of the two-dimensional Ising spin glass model with Gaussian

couplings are determined with the help of exact ground states for system sizes up to L = 50 and

by a Monte Carlo study of a pseudo-ferromagnetic order parameter. We obtain: for the sti�ness

exponent y(= �) = �0:281 � 0:002, for the magnetic exponent � = 1:48 � 0:01 and for the chaos

exponent � = 1:05�0:05. From Monte Carlo simulations we get the thermal exponent � = 3:6�0:2.

The scaling prediction y = �1=� is ful�lled within the error bars, whereas there is a disagreement

with the relation y = 1� �.

PACS numbers: 75.40, 05.45, 75.10

I. INTRODUCTION

It is now widely believed that the bond-disordered two-

dimensional Ising spin glass model with short range in-

teractions does not have a phase transition at any non-

vanishing temperature

1;2

. At zero temperature the spin

glass is in its ground state (i.e. the spin con�guration with

the lowest possible energy), which might be degenerate

or unique depending on the probability distribution of

the spin interactions. This ground state is unstable with

respect to thermal 
uctuations and any non-vanishing

temperature destroys this long range spin glass order. By

decreasing the temperatures on the other hand the spa-

tial correlations grow resulting in a divergence of the spin

glass susceptibility at zero temperature. This scenario is

characterized by a set of critical exponents that depend

on certain features of the bond distribution. Experiments

on Rb

2

Cu

1�x

Co

x

F

4

clearly con�rmed this picture

3

and

reported values for the critical exponents, which are com-

patible with those predicted by the numerical investiga-

tions.

The latter has been pursued in four di�erent ways:

Monte Carlo simulations at �nite temperatures

4;5

,

high temperature series expansion

6

, transfer matrix

calculations

7{9

and exact determination of ground

states via combinatorial optimization

11{14

or replica

optimization

15

. A scaling theory by Bray and Moore

16

establishes relations between exponents quantifying the

sti�ness of the ground state and the critical exponents

characterizing the temperature dependent divergence of

various thermodynamic quantities like correlation length

or susceptibility.

With the most recent numerical studies a contro-

versy has arisen on the critical exponents of the two-

dimensional Ising spin glass with Gaussian couplings: A

Monte Carlo study by Liang

5

(using a Swendsen-Wang-

type cluster algorithm) and a numerical transfer matrix

calculation by Kawashima et al.

9

yield a value for the

thermal exponent � which is signi�cantly di�erent from

the early estimates

4;6{8

. Moreover, Kawashima et al.

15

also study the ground state magnetization of this model

in an external �eld and report a value for the magnetic

�eld exponent, which is, using a scaling relation

16

, in-

compatible with the sti�ness exponent found in domain

wall renormalization group studies.

This observation and the progress in algorithmic de-

velopments motivated us to revisit the critical exponents

of the two-dimensional Ising spin glass model. In this pa-

per we present a synopsis of a zero-temperature (ground

state) and a �nite-temperature (Monte Carlo) approach

to estimate the numerical values for these critical expo-

nents. For the former we report results obtained from ex-

act ground states for the largest system sizes possible to

date, resulting in the most reliable estimates for the sti�-

ness exponent y and magnetic �eld exponent � reported

so far. For the Monte-Carlo simulations we propose

a pseudo-ferromagnetic order parameter that is de�ned

by a projection of spin con�gurations onto the exactly

known ground state and show that the thermal exponent

� is identical to the values that have been obtained by

Bhatt and Young

4

studying the Edwards-Anderson (EA)

order parameter. In the context of domain growth and

non-equilibrium dynamics this concept has already been

introduced and proven to be useful by direct comparison

with the so called replica overlap

19

.

The two-dimensional Ising spin glass model with a

Gaussian distribution of couplings, which we consider

throughout this paper, is de�ned by the Hamiltonian

1



H =

X

<ij>

J

ij

S

i

S

j

� h

X

i

S

i

; S

i

= �1 (1)

where hiji denotes all nearest neighbor pairs on a L� L

square lattice with periodic boundary conditions and the

random interaction strengths obey a Gaussian probabil-

ity distribution with mean zero and variance one. The

parameter h denotes an external magnetic �eld strength.

The outline of the paper is as follows: In the next

section we present our results from exact defect energy

calculations, which provides us with an estimate for the

sti�ness exponent y. In section III we present a conven-

tional �nite size scaling analysis of Monte Carlo data. In

contrast to earlier investigations we used exact ground

state con�gurations instead of replica systems in order

to establish an order parameter. Section IV focuses on

the exact calculation of ground state magnetizations in

an external �eld and its �nite size scaling properties. Sec-

tion V presents a study of the sensitivity of the ground

state with respect to slight perturbations of the coupling

strength. The last section is a summary plus discussion.

II. DEFECT ENERGY

A. Scaling Theory

The scaling theory by Bray and Moore

16

starts with

a coarse grained picture for the spin interactions. It hy-

pothesizes the following scaling ansatz for an e�ective

coupling

~

J(L) among (block) spins on length scale L at

an in�nitesimal temperature:

~

J(L) � JL

y

(2)

where J denotes the variance of the original bond distrib-

ution. For positive sti�ness exponent y (sometimes �) the

coupling becomes stronger on larger length scales, which

means that it is harder to 
ip collectively a connected

set of spins of linear dimension L. Thus thermal 
uc-

tuations are irrelevant and the spin glass ordered state

persists at low temperature. A negative exponent y, as

we expect for d = 2, on the other hand indicates the in-

stability of the spin glass ground state. In this case the

spin glass transition takes place only at zero temperature

and y is related to the thermal exponent � determining

the divergence of the correlation length � � T

��

:

The temperature dependence of the correlation length

� near T = 0 can be inferred from equating the two

energy scales set by the e�ective coupling constant and

the temperature. At low temperatures where (2) holds

one has then

� � T

1=y

(3)

and therefore

y = �1=� (4)

In this way the exponent y, which we calculate in this

section, has to be compared with � determined in �nite

temperature Monte Carlo simulations discussed in the

next section.

B. Algorithm and Results

The problem of �nding a spin con�guration with low-

est energy can be transformed into the problem of �nd-

ing a maximum weight cut in a special weighted graph,

that represents the interaction structure of the spin glass

system

12

. This is known under the name Max-Cut prob-

lem and is in general a NP-hard problem

10

. If the graph

is planar, as in the two-dimensional case with free or �xed

boundary conditions, the problem is solvable in polyno-

mial time

11

. If one has periodic or anti-periodic bound-

ary conditions or if an external �eld (representable as

an extra node to which all other nodes are connected)

is present the graph is not planar any more even in two

dimensions. Hence, the situation we are studying here is

indeed an NP-hard problem.

The results of this section and of sections IV and V

are based on the application of a so-called branch & cut

algorithm to the ground state problem

12

. This algorithm

always �nds an exact ground state of the given spin glass

system. For further details about this algorithm and its

implementation see ref.

17;13

. An important feature of

this approach is, that the returned solutions are proved

to be optimal. Exact ground states of grid sizes up to

100 � 100 can be determined in a moderate amount of

computation time. The 100�100 instances take between

1:5 and 8 hours, 4 hours on average. Up to grid sizes of

50 each run takes less than 15 minutes

13

.

The NP-hardness is not a serious problem as long as

the system sizes L one studies are not in the region where

the exponential dominates, and for really large L, where

it does dominate, the exponent is very small. In the

range L � 32 our empirical CPU-times can be �tted

by a power law (� / L

3:5

). For bigger systems there

enters an exponential term � 1:2

L

inside the used size

range. Note that these are only empirical observations

but no rigorous bound for the complexity. For compar-

ison Kawashima and Suzuki

15

reported about a replica

optimization method which approximates ground states

e�ciently. They achieved an average CPU-time � (L) for

systems of linear size L which can be �tted by a power

law like � / L

5:3

inside the same size range (L � 32).

Although Kawashima and Suzuki only approximate the

ground states while we always �nd optimal solutions,

their CPU-times are similar to ours. On average, their

biggest systems (32 � 32) took 260 seconds, while we

needed 160 seconds for 40�40 spin glasses (1500 seconds

for 60� 60). Kawashima and Suzuki used a VAX 6440,

our computations were carried out on a SPARC 10/612.

One can determine the defect energy by investigat-

ing the sensitivity of the ground state energy to bound-
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FIG. 1. Defect energy E

d

as a function of the system size L

in a log-log plot. The straight line is a least square �t giving

the exponent y = �0:281.

ary conditions

16;18

, which can be quanti�ed by a sti�-

ness exponent measuring the extra energy of a defect

line through the whole sample. The block coupling J

0

is

then given by J

0

=

p

(E

p

� E

a

)

2

, where E

p

and E

a

are

the ground state energies of the system under periodic

and anti-periodic boundary conditions, respectively. We

compute this value in the following way. First we solve

the given spin glass system to optimality under periodic

boundary conditions, i.e., we �nd an exact ground state

con�guration !

p

and its energy E

p

= E(!

p

). Then we

choose two neighboring \columns" of spins and multi-

ply all couplings by �1 that link these two spin sets. By

this modi�cation of the couplings we impose anti-periodic

boundary conditions to the original system. With this

slightly changed objective function we rerun our branch

& cut code to �nd a ground state con�guration !

a

with

energy E

a

= E(!

a

).

Due to the very small magnitude of E

a

�E

p

it is nec-

essary to have a very large number of samples to obtain

stable statistics. For each size L � 30 of our L � L spin

glasses we ran d

2�10

5

L

e samples. The resulting mean val-

ues of the defect energies versus the system size L are

shown in Fig. 1. A least square �t yields the value

y = �0:281� 0:002 ) � = 3:559� 0:025 (5)

The errors are statistical errors only. This estimate

agrees roughly with less accurate early estimates � =

2:96 � 0:22 and � = 4:2 � 0:5 from transfer matrix

calculations

7

as well as � = 3:56� 0:06 and � = 3:4� 0:1

from domain wall renormalization calculations

8

. Note

that Bray and Moore

16

report an estimate y = �0:291�

0:002, which has an error bar that is identical to ours.

However, their maximum system size is L = 12 and they

did not calculate exact ground states.

Our result for y (5) implies a value for �, if the scaling

prediction (4) is correct, that di�ers substantially from

more recent estimates

5;9

. Since in these works the ther-

mal exponent � has been determined directly, we shall

do this, too, in the next section.

III. MONTE CARLO RESULTS

In this section we present our results from �nite tem-

perature Monte Carlo simulations. For this purpose we

introduce �rst a number of quantities that are of interest

for studying the critical properties of Ising spin glasses

in zero external �eld h.

A. Scaling Relations and Methodology

A characteristic feature of a spin glass transition at a

temperature T

c

(which might be zero) is the divergence

of the so called spin glass susceptibility

� =

1

N

X

<ij>

[hS

i

S

j

i

2

]

av

; (6)

where [: : :]

av

denotes the average over the quenched dis-

order and h: : :i a thermal average. Approaching the tran-

sition temperature from the paramagnetic phase one ob-

serves � � (T � T

c

)

�


, which de�nes the susceptibility

exponent 
. As already mentioned there is a diverging

length scale at the transition, the spin glass correlation

length � � (T �T

c

)

��

, which governs the scaling form of

the correlation function near T

c

:

G(r) = [hS

i

S

i+r

i

2

]

av

� r

�(d�2+�)

~g(r=�) (7)

Obviously 
 = (2 � �)�. In the case T

c

> 0 there

is a non-vanishing Edwards-Anderson order parameter

q

EA

= [hS

i

i

2

]

av

below the transition and one has q

EA

�

(T

c

� T )

�

for T < T

c

, the order parameter exponent �

obeying the hyperscaling relation � =

�

2

(d� 2 + �).

In two dimensions T

c

= 0 and since we are concerned

with a continuous bond distribution, in which case the

ground state is non-degenerate, one has

� = 0

� = 0


=� = 2

(8)

Thus we are left with a single unknown exponent �, which

we determined from the scaling behavior of the suscepti-

bility and the Binder cumulant. In contrast to previous

investigations we used exact ground states to de�ne a

pseudo-ferromagnetic order parameter via

M = [hqi]

av

(9)

with

q =

1

N

N

X

i=1

S

i

S

0

i

(N = L

2

) (10)



where S

0

i

denotes the value of the spin at site i in one of

the two ground state con�gurations. Note that in con-

trast to the EA-order parameter here is only one 
uctu-

ating �eld involved, which would in principle reduce the

order parameter exponent to �=2. Since we have T

c

= 0

and thus � = 0 this is not relevant here. The correspond-

ing order parameter susceptibility is de�ned via

�

L

= N [hq

2

i]

av

: (11)

For the �nite size scaling form of the susceptibility we

expect according to (8)

�

L

(T ) = L

2

�(L

1=�

T ): (12)

The second quantity we studied was the disorder aver-

aged Binder cumulant

g

L

=

1

2

�

3�

hq

4

i

hq

2

i

2

�

av

: (13)

Since this is a dimensionless combination of moments its

�nite size scaling form is

g

L

(T ) = g(L

1=�

T ): (14)

This quantity provides us with a second independent es-

timate for the scaling exponent �.

We applied single spin 
ip Glauber dynamics to per-

form our simulations with a spin 
ip probability given

by

w(S

i

!�S

i

) =

1

1 + exp(�E=T )

; (15)

and �E being the energy di�erence between the new and

the old state. Time is measured in Monte Carlo sweeps

(MCS) through the whole lattice.

The estimate of the critical exponents necessitates the

determination of the equilibrium values of the thermody-

namic quantities of interest. Due to the slow relaxation of

spin glasses it is di�cult to decide whether the values are

stationary or not, because it is hard to discriminate be-

tween real- and quasi-stationary values of the functions.

This is why we used a de�nite criterion analogous to the

criterion introduced by Bhatt and Young

4

:

We simulated two replicas of the system, one which

has been initialized with a random con�guration and the

other with a ground state con�guration. From Fig.2

it can be clearly seen that if both estimates agree we

obtained a time independent value of the susceptibility,

which we took as our equilibration criterion.

B. Results

We studied the temperature dependent scaling behav-

ior system sizes extending from L = 6 to L = 12.

The number of samples is chosen that approximately

20

40

60

80

100

10

χ L
(t

w
)

tw

ground
   random

10
2

10
3

10
4

10
5

FIG. 2. Plot of the susceptibility at T = 1:4 for L = 10

averaged over 192 samples. We compare the values of �

L

(t

w

)

obtained from systems initialized with a ground state con-

�guration with those obtained from systems with a random

initial con�guration. Obviously the results become time inde-

pendent (aside from statistical 
uctuations) if both estimates

agree.

N �#samples = const. holds. We simulated at least 128

samples for L = 12.

Fig.3 shows the equilibrium values of the susceptibility

for various system sizes. We could reach the equilibrium

value of the susceptibility in the chosen time interval for

T � 1:0 (L > 6) and T � 0:8 (L = 6) respectively. With

this data we got an estimate from the scaling-ansatz (12).

The best data collapse we obtained (see Fig.3) for

� = 3:4� 0:2: (16)

The error bars denote the interval of exponents where we

get an indistinguishable data collapse.

Fig.4 shows the equilibrium values of g

L

for the same

samples. The equilibrium value could be reached within

the same time interval for some smaller temperature.

This is why the data is more sensitive to changes of the

value of the critical exponent. Thus we obtained the best

data collapse for

� = 3:7� 0:1: (17)

in agreement within the error bars with the value de-

termined above. Concluding we obtain an average value

of

� = 3:6� 0:2 (18)

for the critical exponent from our Monte Carlo simu-

lations. This value agrees well with the estimate (5)

that we obtained from the defect energy calculations

in the last section. It di�ers substantially from the

more recent estimates obtained by a cluster Monte Carlo

study

5

(� = 2:0 � 0:2) and a numerical transfer matrix

calculation

9

(� = 2:08� 0:01).
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FIG. 3. Equilibrium values of the susceptibility depending

on temperature and system size.

IV. GROUND STATE MAGNETIZATION

A nonzero external �eld h induces a non-vanishing

magnetization m = N

�1

P

N

i=1

S

0

i

in a system with

ground state fS

0

i

g. The relation between magnetization

and �eld strength is highly nontrivial in general and mo-

tivates the introduction of a new exponent � characteriz-

ing this relation in the in�nite system (L!1) for small

�elds (h� J):

m

1

(h) � h

1=�

(19)

The corresponding �nite size scaling form and a scaling

relation between � and the already known exponent y can

be obtained by the following argument

16

:

If the ground state is non-degenerate the spins are ran-

domly oriented within an in�nitesimal �eld at T = 0.

Hence the magnetization m

L

of a �nite system in zero

�eld is a random variable with variance 1=N , implying

m

L

(h = 0) � L

�d=2

. As a further consequence of the ran-

dom orientations the total magnetic moment of a block

spin of linear dimension L is of order L

d=2

, thus the mag-

netic �eld on this length scale has to be rescaled accord-

ing to

0.5
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FIG. 4. Results of g

L

. Only equilibrium-values are shown.

~

h(L) � L

d=2

h : (20)

in contrast to a ferromagnet, where we would have

~

h(L) � L

d

h. For nonzero �eld (at T = 0) one would

expect m

L

(h) �L

d=2

to be a function of the dimensionless

ratio of energy scales

~

J(L) and

~

h(L) only, thus

m

L

(h) = L

�d=2

~m(L

d=2�y

hJ

�1

) (21)

with ~m(x ! 0) = const:. Since for L ! 1 the L-

dependence of the magnetization has to drop out it is

~m(x !1) � x

d=(d�2y)

. Moreover, in this limit we have

to recover (19), which implies for d = 2

� = 1� y (22)

Rewriting (21) slightly for our our purposes yields

m

L

(h) = L

�1

m(Lh

1=�

) (23)

with m(x ! 0) = const: and m(x ! 1) / x. Note

that (23) should hold independently of the correctness

of the above derivation of the scaling relation (22): The

length scale induced by the magnetic �eld is given by

h

�1=�

and (23) is simply the �nite size scaling form one

would expect for the magnetization.

With our branch & cut algorithm we are not only

able to compute m(S; h) for a sample S for some spe-

ci�c values of h like other authors did (see Kawashima

and Suzuki

15

). We can evaluate the complete piecewise
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FIG. 5. Scaling plot for the ground state magnetiza-

tion: Lm

L

(h) versus Lh

1=�

for various system sizes with

1=� = 0:675. Note that for high �elds h ! 1 the curves

have to saturate at L �m

L

(h!1) = L.

constant function m(S; h) for each sample. We do this by

starting at h = 0, computing the ground state, and �nd-

ing the next increased value of h for which the current

ground state loses optimality using a sensitivity analysis

technique

20

. At that point we compute the new ground

state. We do this up to a given �eld strength or until

saturation occurs.

This technique gives us the (averaged) function m

L

(h)

for each system size L with any arbitrary resolution. We

used systems of sizes L 2 f10; 20; 30;40;50;60g and com-

puted the ground states for d

10

5

L

2

e samples for each size L.

We judged the data collapse in a plot m

L

L versus Lh

1=�

as shown in Fig. 5 by visual inspection and using cubic

spline interpolation. In the �gure we have included some

error bars for the L = 50 and the L = 60 curves to show

the typical errors. The errors decrease with decreasing

system size, because of the increasing number of samples.

We obtained the best data collapse at

1=� = 0:675� 0:005 ) � = 1:481� 0:011 (24)

a value that agrees well with the result of the ground

state magnetization study by Kawashima and Suzuki

15

.

This value together with estimate y = 0:281 (5) from the

defect energy calculation implies that the scaling hypoth-

esis (22) is signi�cantly violated. Since we estimated �

directly in a Monte Carlo simulation we conclude that it

is also not legitimate to infer from the magnetic exponent

� via (22) and (4) that the thermal exponent � should be

close to 2 as found in

5;9

.

V. CHAOS EXPONENT

One of the peculiar features of spin glasses is their ex-

treme sensitivity with respect to parameter changes

21

,

like small temperature, �eld or coupling variations. For

the ground state properties this means that a slight per-

turbation of the initial set of couplings leads to a com-

plete reorganization of the original ground state over a

length scale that depends on the strength of the per-

turbation. This overlap length is expected to behave as

follows

21;22

:

Let us modify the interactions by replacing each cou-

pling J

ij

by J

0

ij

= J

ij

+ �K

ij

. Here K

ij

is again a

Gaussian distributed random number with variance one

and the parameter � measures the strength of the pertur-

bation. The comparison of the energy balance �E

defect

for turning over a connected spin cluster of linear extent

L with the change of the ground state energy �E

random

induced by the random variation of the couplings yields

an estimate for the length scale beyond which the origi-

nal ground state is unstable with respect to the pertur-

bation. �E

defect

is simply the defect energy, which is

proportional to JL

y

(see section II). The contribution

to �E

random

coming from the L

d

S

interface spins of the

cluster (d

S

being the fractal dimension of the interface)

is proportional to �L

d

S

=2

. Thus for L > L

�

(�) with

L

�

(�) � (J=�)

�1=�

with � = d

S

=2� y (25)

we have �E

random

(L) > �E

defect

(L) and 
ipping of clus-

ters is favored by the perturbation. Thus the ground

state con�gurations in the original (denoted by S

i

) and

the perturbed sample (denoted by S

0

i

(�)) become uncor-

related for distances larger than L

�

.

This statement can be quanti�ed by studying the over-

lap correlation function

C

�

(r) =

"

1

N

N

X

i=1

S

i

S

i+r

S

0

i

(�)S

0

i+r

(�)

#

av

: (26)

According to the above mentioned argument one expects

in the limit N !1 a scaling form

C

�

(r) � ~c(r�

1=�

): (27)

In Fig. 6 we show the result of our calculation of the

overlap correlation function C

�

(r). We �xed the system

size to L = 50, for which reason one has to neglect the

data points for r > L=4 (note the upwards bending due

to the periodic boundary conditions). For the rest of the

data we obtain the best data collapse for

1=� = 1:05� 0:05 i:e: � = 0:95� 0:05 (28)

which agrees well with the estimate from Bray and

Moore

21

obtained in a di�erent way and by considering

smaller system sizes. With the value for y we reported

in section II the fractal dimension of the interface of an

excitation is given by d

S

= 1:34� 0:10.
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FIG. 6. Scaling plot of the overlap correlation function

C

�

(r) versus r=L

�

with L

�

= �

�1=�

. The best data collapse

(for data con�ned to r < L=4) is obtained for 1=� = 1:05.

The system size is L = 50 and the data are averaged over

400 samples. These were obtained by creating > 80 reference

instances and creating 5 random perturbations of strength �

for each.

In passing we mention that the dependency of C(r)

on distance r is neither exponential nor algebraic: it can

nicely be �tted with a stretched exponential

C(r) � exp(�r

a

=b) + exp(�(L � r)

a

=b) (29)

with �t parameters a and b. For instance � = 0:1 for

L = 50 yields a = 0:8 and b = 0:75. Since a and b

seem to depend on the perturbation strength � we do

not expect the form (29) to be universal.

De�ning �

L

(�) =

P

L

r=0

C

�

(r) one expects from (27)

�

L

(�) �

~

�(L�

1=�

) (30)

and in a more direct way for the ground state overlap

21

Q

L

(�) = j

P

N

i=1

S

i

S

0

i

(�)j

Q

L

(�) =

~

Q(L�

1=�

): (31)

Note that �

L

(�) = Q

2

L

(�). We show a �nite size scaling

plot for Q

L

(�) in �g. 7, from which we estimate 1=� =

1:2 � 0:1. The quality of the data collapse is good (cf.

Fig. 2 of ref.

21

).

VI. SUMMARY

With the help of an improved branch & cut algorithm

we were able to reinvestigate the critical behavior of the

two-dimensional Ising spin glass model with a continuous

bond distribution with much better accuracy. We found

that the sti�ness exponent is given by y = �0:281�0:002

0.4

0.6

0.8

1

0.01 0.1 1 10

Q
L
(δ

)

Lδ1/ζ

L  = 8
L = 16
L = 25
L = 50

FIG. 7. Scaling plot of the ground state overlap Q

L

(�).

The best data collapse is obtained with 1=� = 1:2.

implying a correlation length exponent of � = 3:56�0:02,

which agrees well with our independent estimate � =

3:6�0:2 fromMonte Carlo simulations. For the latter we

introduced a pseudo-ferromagnetic order parameter with

the help of exactly known ground states and analyzed its

�nite size scaling behavior at non-zero temperatures.

We hope that our calculation settles the controversy re-

garding the thermal exponent � initiated by the cluster

Monte Carlo study of Liang

5

and the numerical transfer

matrix study by Kawashima et al.

9

: Their values for �

are substantially smaller than ours indicating a violation

of the scaling prediction by Bray and Moore

16

. Our re-

sults for y and � are clearly compatible with this scaling

prediction � = �1=y.

Furthermore we determined exact ground states for

systems within an external �eld and from a �nite size

scaling analysis of the magnetization we obtained an

independent estimate for the magnetic exponent � =

1:48� 0:01. This con�rms an earlier observation

15

that

there seems to be a disagreement between the scaling

theory

16

predicting � = 1 � y and the numerical values

obtained so far. In particular this discrepancy does not

fade away for larger system sizes, which we were able to

study here. Therefore our conclusion is that there must

be a deeper reason for this disagreement than some �nite

size e�ect which might disappear if one only considers

large enough system sizes.

Moreover, we calculated the overlap correlation func-

tion by perturbing the bonds slightly in a random man-

ner. We found a chaos exponent � = 0:95�0:05 in agree-

ment with earlier estimates from the analysis of smaller

system sizes.

Finally a few words concerning future perspectives:

First we would like to point out that in principle it is

possible to improve the system sizes and quality of sta-

tistics even further with the algorithm we have at hand,

provided we could simply run it on a powerful paral-

lel machine. However, our algorithm relies heavily on

a commercial linear program solver for which we do not



have a license to run it on hundreds of processors of a e.g.

Paragon XP/S10. On such a machine we could possibly

obtain an acceptable quality of statistics for L = 100, for

which we can presently do only a few samples in reason-

able time on individual workstations.

As has been mentioned in the introduction, recently a

�nite temperature phase transition in the site disordered

Ising spin glass has been reported

2

. Since the critical

temperature is pretty small, though, Monte Carlo studies

might be hampered by equilibration problems. Therefore

this result could be put on a much �rmer base, if the

sti�ness exponent y would indeed turn out to be positive

in this particular two-dimensional model and so signaling

the stability of the spin glass ordered phase for small,

non-vanishing temperatures. We intend to answer this

question with our algorithm soon.

Furthermore an obvious and highly rewarding step

would be to perform the same study in three dimensions.

To calculate ground states for the three-dimensional Ising

spin glass model is an NP-hard problem and the two-

dimensional problem we have studied here is NP-hard,

too (note we have a continuous bond distribution, peri-

odic boundary conditions and an external �eld). How-

ever, although both questions belong to the same class of

hard combinatorial problems, the three-dimensional Ising

spin glass is much harder, which means that the opera-

tion count will be much higher: either the power of the

L, the system size, or the coe�cient in the exponent will

be larger for three dimensions than for two dimensions.

Nevertheless we are currently undertaking e�orts in this

direction, our progress in this matter will be reported

elsewhere.
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